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Binaries and Populations II
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Previously

● What is stellar population synthesis?
● Why is it useful?
● The big binary parameter space
● Sampling the parameter space
● Initial distributions in single and binary stars
● Fast synthetic stellar evolution models
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What's coming next

● Observations : the things to compare with
● Selection effects
● How to compare models to obs.
● The power of population synthesis: binary stars
● My binary_c code → examples for you!
● Population synthesis case studies
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Observations
● However good our theories, 

astrophysics is still very much 
observationally driven 

● These are usually either surveys e.g.
– Hipparcos, Gaia

– SDSS, APOGEE, Galah 

– COROT, Kepler

● Or “random” pointings toward 
objects of interest (often called 
“surveys”!)

● Always SELECTION EFFECTS
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● Volume limit is simplest, you need do nothing if you 
think the sample has enough objects

● Magnitude limits you can model with a cut off or 
completeness function 

(cf. Malmquist bias)

● A complete survey is rare 

but possible, e.g. strong 

barium stars (more on these later!)
● Random choice may be ok if sufficient number of stars 

to justify the risk. This may also be all you can get.
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Models vs observations
● By eye fitting: which is the best match?
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Models vs observations
● By eye fitting: which is the best match?

Castro-Rodriguez et al. (2014)
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Models vs observations
● By eye fitting: Rotating models are better?

Castro-Rodriguez et al. (2014)
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Models vs observations: c2 tests

Observed
value

Computed
value

Error on ODegrees of freedom
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n=2

c2=12

c2=26

O-C

Bad fits have  

Abate et al. (2014)
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n=10

O-C

Good fits have 

c2=1.2

Abate et al. (2014)
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Amoeba/Downhill Simplex
Minimise function O-C
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Other matching algorithms

● Genetic
– Minimize fitness functions

● Markov-Chain Monte Carlo

 → used often e.g. in cosmology
● Etc.  whole branch of → numerical analysis
● Latest applications to (many) stars:

Bayesian methods
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Bayesian Methods
● Is O-C good enough? Bayes says no.

Prior
Knowledge

Likelihood of B
given A

Can be used to compare O and C 
and provide a distribution of the 

(many) best fitting parameters
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Case study:
Given logL, Teff and logg, of star V3903 Sgr A what is M?

Best model fit:

Torres et al. (2010):

http://www.astro.uni-bonn.de/stars/bonnsai/    Schneider et al. (2014) 
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Bayes + (MC)MC is easy these days

binary_c-python +
emcee + pygtc 

● Python packages abound
● emcee is popular
  → there are many others!

● better comparison O-C
 → error bars
 → bootstrap 
 → constraints

e.g. https://prappleizer.github.io/Tutorials/MCMC/MCMC_Tutorial.html
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Recap: We have discussed
● What a population of stars is
● How to distribute stars (initial mass function etc.)
● How to make population statistics
● How to compare the population with 

observations
● But we haven't discussed a powerful aspect of 

population synthesis... 
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Binary stars
Two stars bound by 

gravity
Kepler

Newton

1=Primary; 
2=Secondary
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Binary fraction

Bi
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O B A F G K M L T
(Primary) Spectral typeRaghavan et al. (2010)

Duchene & Kraus (2013)
Moe and di Stefano (2017)

Most interesting stars
are in binaries!
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Binary fraction

Duquennoy & Mayor (1991)
Raghavan et al. (2010)

Sana et al. (2012)
>80% in O stars

?

Moe and di Stefano (2017)  combines many surveys and selection effects  initial distributions→ →
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Binary star parameter space

● Primary mass          ~  follows single-star IMF

Universal? Probably not … e.g. GalIMF module
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● Secondary mass 

Data from Duchene & Kraus (2013)

Twin
binaries?

Hard to see!

Binary star parameter space
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Öpik

Binary star parameter space

● Separation/Period  

Raghavan et al. (2010)
G/K dwarfs

Sana et al. (2012)
O “dwarfs”

Interpolated!



 25

Binary star parameter space

● Eccentricity

Safe(ish) to assume e=0 …
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Binary statistics reminder: not trivial!

Number of stars of interest:

Usually: set e=0, S=1, fix Z→d(t) and calculate ratios
                                                     (see previous lecture)

But still a lot of work: at least a quadruple sum.

Now you see why fast synthetic codes are useful!
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Binaries: fundamental properties

Angular momentum:

Energy:

Masses: 
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Tides: synchronization and 
circularization

● Torque
● Hence lowest energy state:  W = w  and  e = 0

e.g. Zahn 1972, 1980s 
Hut 1981, book of Tassoul etc.
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e vs R/a (unevolved binaries)

Data from 
Giuricin, G.; Mardirossian, F.; Mezzetti

            Astronomy and Astrophysics 134, 365

Close binaries are 
circularized rapidly
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L1 L2

Equipotentials
around  a 
binary star
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Mass transfer through L1

= Roche Lobe Overflow (RLOF)
When R > RL

Roche radius RL=a f(q) e.g. Eggleton (1983)
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Conservative mass transfer

q=1 : M1=M2



Unstable mass transfer  →
common envelope evolution!

Red giants : may eject envelope
But some might merge!



Comenv Final Fate … ?

Merger:  
Rapidly Spinning

Giant

Ejected (planetary?) nebula
Close binary at the core with 

white dwarf



binary_c-cpython 
notebook_common_envelope_evolution



Close systems 1: 
low/intermedate mass

● Donors are usually red-giant stars

→ hydrogen shell burning, maybe AGB stars  comenv→
● → He/CO/ONeWDs, perhaps sdB/O stars
● accretion from 

surviving star → 

novae, type Ia SNe
● COWD? - COWD 

binaries → SNe Ia
lo

g 1
0 T
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e

Time since starburst (“Delay time”) / Myr
10 100 1000 10000

Claeys et al. (2014)



Close systems 1I: high mass
● X-ray binaries → NS+NS, NS+BH, BH+BH systems

→ close enough for gravitational radiation
● Peters 1964 timescale



Close systems 1I: high mass
● X-ray binaries, NS+NS, NS+BH, BH+BH systems

→ close enough for gravitational radiation
● System needs to survive mass loss and SN kicks 

→ unlikely, so requires “luck” → many systems



David Hendriks models with binary_c-python







Predicted distributions of BHBH systems now
→ ready to fold in selection effects
→ then compare with observations
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Other important binary physics
● Supernova kicks: e.g. eccentric X-ray binaries
● Exotic stars e.g. helium stars, sdB/O stars
● Gravitational radiation: spiral in of very close binaries: 

NS/BH+NS/BH, WD+WD → bang!
● Rejuvenation: accretion makes stars younger
● Wind accretion in wide binaries (see case studies)
● Circumbinary discs → eccentricity pumping, accretion

All this physics is in my binary popsyn code binary_c
http://personal.ph.surrey.ac.uk/~ri0005/binary_c.html
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 binary_c code

http://personal.ph.surrey.ac.uk/~ri0005/binary_c.html

You'd be a 
mug not to 

use it!
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Case studies with binary_c
● Massive stars: spin rates, evolutionary outcomes

 (Sana et al. 2012, de Mink et al. 2013, 2014)

● Mass functions with binary stars
 (Schneider et al. 2014, 2015)

● Mergers and R-type carbon stars
(Izzard et al. 2007, Xiang and Jeffery 2013)

● Type Ia supernovae
(Claeys et al 2013, 2014)

● Wind accretion and carbon-rich halo stars
(Izzard et al 2009, Abate et al. 2013, 2014, 2015)
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Case studies with binary_c
● Abundances in merged thick disc stars

 (Izzard et al. 2018)

● Nova rates in the Milky Way and M31

      (Kemp et al. 2021)

● Circumbinary discs around post-AGB stars

      (Izzard and Jermyn 2018, 2021)

● Tides and the MINT library

(Mirouh et al. 2021)
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http://personal.ph.surrey.ac.uk/~ri0005/cgi-bin/binary5.cgi
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http://personal.ph.surrey.ac.uk/~ri0005/cgi-bin/binary5.cgi
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● Total control over spacing/distributions
● Multi-D parameter space handled automatically
● loops over single/binary stars, M1, M2, a, e, whatever!
● Multi-CPU or distributed over computer cluster

population.add_grid_variable(
    name="M_1",
    longname="Primary mass",
    valuerange=[1,10],
    resolution=100,
    spacingfunc="const(1,10,100)",
    precode="M_1=math.exp(lnm1)",
    probdist="three_part_powerlaw(M_1, 0.1, 0.5, 1.0, 150, -1.3, -2.3, -2.3)*M_1",
    dphasevol="dlnm1",
    parameter_name="M_1",
)
population.evolve()  

binaryc-python module

https://gitlab.eps.surrey.ac.uk/ri0005/binary_c-python
Docs at https://ri0005.pages.surrey.ac.uk/binary_c-
python/index.html

← David Hendriks main binary_c-python developer
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For this school

● http://personal.ph.surrey.ac.uk/~ri0005/
Heidelberg2021/school.html

● Installation is either FAST with Virtualbox
● or SLOW: you build the code yourself
● but you learn how to do it, vital skills!

   → try both? neither is hard!
● works best on Linux (e.g. Ubuntu) → simple install script
● … but compiles on OSX and Windows (Linux subsystem) 
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binary_c-python notebooks
● In the examples/ directory

https://gitlab.eps.surrey.ac.uk/ri0005/binary_c-python/-/tree/master/examples

● With documentation
https://ri0005.pages.surrey.ac.uk/binary_c-python/example_notebooks.html

● Tutorials from David
– Running individual systems with binary_c-python

– Using custom logging routines with binary_c-python

– Running populations with binary_c-python

– Extra features and functionality of binary_c-python

● Use these to really understand how it works

      → and for vital technical know-how for you!
● notebook_individual_systems is particularly useful to explore how one 

system evolves and interact
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binary_c-python notebooks

Physics examples from me:
● notebook_HRD 

make Hertzsprung-Russell diagrams of single/binary systems

● notebook_luminosity_function_single
single-star luminosity function

● notebook_luminosity_function_binaries
binary-star luminosity functions (cf. Schneider+ 2014)

● notebook_common_envelope_evolution
shows how the orbit changes during common envelope

● notebook_solar_system
put some rocks in orbit around the Sun… see what happens!

● notebook_BHBH
BHBH merging systems - work in progress, please watch for updates
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● Computing speed increase: use detailed models?
● Hybrids may be better: computers have a long way 

to go to be >106 times faster
● Progress in statistics, but how we compare huge 

parameter spaces and datasets (e.g. Gaia) is still a 
challenge. Machine learning the way forward? 
Maybe...

● Need smart people!

The future of population synthesis
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