

RLOF rates • Always have \dot{M}_1 a strong function of ΔR $\Delta R = R - R_L$ • Hence unless dynamical timescale expansion RLOF is self-regulating with small ΔR • Supersonic (ballistic) flow through L₁

 Streamlines intersect: disc, eventually material hits secondary or direct impact

Binary Stars 6

Stellar Timescales

Argela Institu für Astron

- Three timescales are important
 - Dynamical: minutes-hours fast
 - Thermal: (tens of) Myr medium
 - Nuclear: Myr to Gyr slow
- In mass transfer we need to know
- Timescale of mass transfer:
 - Change of radius R
 - Change of Roche lobe "radius" $R_{\rm L}$
- Timescale on which accretor can react

Binary Stars 6

Conservatism

- · Conservative RLOF: no change in system
 - Mass
 - Angular momentum
- Non-conservative:
 - Mass β
 - Angular momentum γ
- Physical conditions + a model give β and γ

Binary Stars 6

Stability

- What stops Roche-lobe overflow?
- Question of stability and + or feedback
- Depends on:
 - 1 How R_1 responds to mass loss
 - 2 How the orbit (a) responds to mass transfer
 - 3 How the other star responds to accretion
- For now, neglect 3 and focus on 1 and 2

Binary Stars 6

Response of the Donor Star

- Initial response: dynamical
- General rule:
- "Convective" stars expand (n=3/2 polytropes)
 - e.g. red giants, white dwarfs
- "Radiative" stars shrink
 - e.g. main sequence, core-He burning
- Later: thermal, nuclear response of star

Binary Stars 6

Response of the orbit

- Orbit may widen or shrink
- Roche lobe size depends on separation *a*
- and mass ratio q $\zeta_{
 m ad} < 2.13 q 1.67$
- Dynamical instability if
- Mass transfer runs away!

Response of the accreting star

• Luminosity of accretion may exceed Eddington

- Hot spot?
- Spin up beyond breakup if $\Delta M\gtrsim 0.1M$
- Nuclear burning on surface? Novae or SNIa?
- mixing, rejuvenation, swelling of accretor

Contact or Common envelope evolution
Binary Stars 6

Binary Stars 6

