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Current binary stars research:
From theory to current observations
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Topics

* Binary fraction and how binary interactions
change observations.

* e.g. Observed Mass Function
* Observed abundances
* Thermohaline Mixing

e Binary as “"archaeology” tool:
e.g. Carbon Enhanced Metal Poor stars



VLT/FLAMES Tarantula Survey

* Multi-epoch spectroscopy of 800 massive stars
» Stellar rotation, mass loss, multiplicity
* 30 Dor: Young starburst region

Radial Velocity measurement
— detection of binary
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Cumulative distribution
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Figure 3. Rotational velocity (color shading) as a function of initial orbital period and time for the brightest main-sequence star in a binary system. We adopt initial
masses of 20 and 15 M. initial rotational velocities of 100kms~'. and a metallicity of Z = 0.008. As the stars evolve along the main sequence their rotational
velocity is altered by stellar winds, internal evolution, tides, and most notably mass accretion. The vertical dotted line indicates the maximum separation for which

this system interacts by mass transfer. The examples shown in panels (a) and (c) of Figure 2 are part of this simulation.
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(A color version of this figure is available in the online journal.)
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The rotation rates: early B stars
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Key points:

* Most stars (especially massive stars) are not
single stars.

» Observed single stars can be product of
mergers!

* Wide Binary (with no interaction) are the best
single stars



Evolutionary effects on mass functions
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Binary parameter space
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Main sequence single stars

= Wind mass loss reduces stellar masses = accumulation of stars
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Main sequence binary stars

= Mass transfer, stellar mergers and rejuvenation shape PDMFs

WIY" e
y

——

0 | I | I I I T

0.0
Blue stragglers gg W
10.0 Myr
100.0 Myr
1000.0 My

"
Salpeter IMF ——— |

log( mass-function ) [log(dp/dlogM)]

3k
-4 B ] ]

~3% | ~6% i ~25% 6 ~50%
I I SN ! [ W W N—

0O 02 04 06 08 1 12 14 16 18 2
Slide by Schneider log M/M_,



PDMF: binary stars

= Mass transfer, stellar mergers and rejuvenation create a tail
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Comparison with observations
= PDMFs from Stolte et al. 2005 and Hulfmann et al. 2012
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= Bump and tail explained by our models:
* Arches: t = 3.5+ 0.3 (model) + 0.6 (obs.) Myr
* Quintuplet: ¢ = 4.8 £ 0.3 (model) £+ 1.1 (obs.) Myr
= The most massive stars are rejuvenated binary products

=» Resolves cluster age problem
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Comparison with observations
= PDMFs from Stolte et al. 2005 and Hulfmann et al. 2012
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* Arches: t = 3.5+ 0.3 (model) + 0.6 (obs.) Myr
* Quintuplet: ¢ = 4.8 £ 0.3 (model) £+ 1.1 (obs.) Myr
= The most massive stars are rejuvenated binary products

=» Resolves cluster age problem
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Implication on stellar mass limit

* Are there an upper mass limit for massive stars??

* 160-320 solar mass in R136
(Crowther et al 2010)

* They are likely to be binary products

* Observed mass does not necessarily give the
actual upper mass limit, so observations of
supermassive stars does not necessarily
contradict theory.



Key Points:

* The current observed Mass Function is
significantly altered by binary interaction
(and mass loss).

 The most massive stars are typically produce
of binary mergers!



How Binary can affect surface
abundances?

* Materials transferred from primary to
secondary will change the secondary surface
abundances.

But : Do the material just sit on top of the
surface?

* \What happen to primary that lose significant
mass?

« Effect of spin-up due to mass transfer?
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“Hunter” diagram

Rotational mixing cannot predict a significant
portion of massive MS stars that are either
1) N-rich slow rotators
2) N-poor fast rotators

Binary interaction such as mass accretion can
spin up the stars, while mass loss can spin
down the stars.

— Previously rotationally mixed stars may
appear slow rotators due to mass loss?

— Recently spun up secondaries may yet to
enhance surface nitrogen?

24



* There are many possible explanations, but we
do not know whether those scenarios are
frequent enough to explain the observed
frequcies

* As covered In last lecture, we need population
synthesis to cover the large input parameters
space.

* Models are made with population synthesis
code BONNfires.

25



A binary sample

Primary = 20M _
Secondary = 15M

Primary initial rotational velocity= 100km/s
Secondary Vrot= 50km/s
Initial sep =28 R

26
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Or in a very close binary.
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Key Points

* Mass gainer is spun up and accrete materials
from primary.
The surface composition is altered by

1) materials accreted
2) rapidly fast rotation can lead to rotational

mixing from the core

* For mass loser, the inner core and be exposed
due to significant mass loss.

» Caveat: Mergers will complicate things.



From most recent mergers models
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And a merged star may not behave exactly like a single star.
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Thermohaline mixing

= What happens to material that accretes?

= In general it comes from an evolved star 1.e. one in
whichH — He, C,N,0 —~ 98% N efc.

= 1.e. the molecular weight 1s larger
P=1 XMH X U

W 4

66X 4Y +2

v

= Unstable to thermohaline instability

= See e. g. https://secure.wikimedia.org/wikipedia/en/wiki/Thermohaline
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Thermohaline In irlk

Binary stars - Robert Izzard



Thermohaline Iin stars

= Relies on thermal transport so instability
occurs on thermal timescaile

(I1.e. fast

)

= Kippenhahn et al. 1998: diffusion model
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Thermohaline example
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Binary as "archeology” tool

» For first few generations of stars (metal-poor)
stars, most of them have already ended their
lives as Supernovae/Planetary nebula
and is now WD/BH.

 However, if they have a low mass binary
companion accreting materials from them
during their lives, the surface abundances can
help us deduce the evolution of the system.

 Example: Carbon-enhanced Metal-Poor
(CEMP) stars



CEMP stars

* Low mass (~0.8M) stars
metal poor ([Fe/H] <-2)
carbon enhanced ([C/Fe] > 1.0)
around 20% of metal-poor stars.
(Review paper by Beers & Christlieb 2005)

* Variation of other abundances, in particular:
nitrogen enhancement,
S-process, r-process isotopes.

» Possible formation scenarios:
binary mass transfer from AGB star
binary mass transfer from rotating massive
stars
formed from SN remnant ....

M'-.
L



e s-process isotopes are made in AGB stars

* r-process isotopes are associated with
supernovae.

« Some CEMP-s stars have indication of binary
companion through velocity variation
— consistent with current belief.

» Strong Nitrogen enhancement indicates CNO
cycle that convert Cto N



Bigger picture

* |If we can find out the mass range for the
primary/formation channel of observed CEMP
stars:

e can find out whether how initial mass function
depends on metallicities.
e.g. How much metal are required for low-
mass star to form.

* Independent test from star formation theory

* IMF particularly important for early Universe
reionization and chemical evolution

o



Stars with different mass/metallicity have different

nucleosynthesis signature
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Complications:

* |n order to deduce what is the initial primary
mass, we need to model how mixing (e.qg.
thermohaline mixing) can affect our current
observations.

* Detailed models for AGB/massive stars do
vary due to treatment of convection, rotational
mixing etc.

* Population synthesis is used to estimate
frequency of different channels, but so far no
perfect match for frequencies of different
CEMP stars with dlfferent abundance
patterns.
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CEMP star: [C/Fe]=3.25
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CEMP star: [C/Fe]=2.41

With thermohaline mixing
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Fig.7. The distribution of [IN/Fe] in our default CEMP population A
(filled histogram) compared to observations (open histogram with
Poisson error bars).
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Fig.8. The distribution of [N/Fe] versus [C/Fe] in our default
CEMP population, model set A (darker grey indicates a larger density of
stars). The vertical dashed line indicates our CEMP selection criterion
([C/Fe] = 1) and the diagonal dashed line shows our NEMP selection
criteria ([N/Fe] = 1 and [N/C] = 0.5). Observed CEMP stars are indi-

cated by crosses.
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e The C/N abundances don't match.
Lack of nitrogen-enhanced stars.

* Lack of s-process CEMP extremely metal-poor
stars observed can tell use either
1) formation channel changed
2) AGB behaviour changed below critical
metallicity

* Mergers may also form some CEMP stars
Particular those that has no indication of
companion.



Key Points

 Observed abundances of low mass star
companion gives us hints of the primary
companion

» Caveat: lots of uncertainties in both binary and
single stars physics...




THANK YOU

BONNFIRES

The Bonn F ramework for [nvestigalion into the (binaRy) E volution of Stars

Herbert Lau
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