Binary_c days, September 8th and 9th, 2015

Hoyle Committee Room, Institute of Astronomy, Madingley Road, Cambridge

Start time: 9.30am for 10am; Coffee 11am; Lunch at Churchill; Tea 3.30pm

Curry night on the 8th

Laptops can be connected to the screen; white boards available; internet via Eduroam

Participants

- Carlo Abate
- Anna Hourihane
- Jarrod Hurley
- Robert Izzard
- Denise Keller (in the cloud)
- Selma de Mink

Programme

Tuesday 8th

History and reasoning

- Stellar evolution based on Jarrod Hurley's SSE/BSE code
- Full evolution vs "synthetic" evolution
- WTTS2 demo: *binary_c* vs *TWIN* (Eggleton's code)

Science in binary_c

- Single star evolution
 - SSE models
- Binary star evolution
 - BSE = SSE + binary algorithm
 - common envelope (+mass accretion)
 - Wind mass transfer
 - RLOF and mergers
 - Tides

- Coen Neijssel
- Matt North
- Fabian Schneider
- Christopher Tout
- Manos Zapartas
- Anna Żytkow

- Gravitational waves
- Explosions (SNIa, novae)
- Nucleosynthesis
 - AGB
 - Massive stars
 - Supernovae, novae etc.
 - Binaries: e.g. thermohaline mixing

Recent science updates

- Contributions please! Suggestions:
 - Carlo: wind-RLOF, s-process at low metallicity
 - Selma: massive stellar structure, rotation, rejuvenation
 - Rob: Adaptive RLOF, tidal E₂, mass transfer algorithms
 - Fabian: mergers and blue stragglers
 - Denise: planetary nebulae

Binary_c code structure

- Original fork from BSE
 - C rewrite, extensive testing on "random" systems
 - Extended with nucleosynthesis, particularly AGB
- Modularization and directory structure
 - src/
 - * hrdiag : stellar evolution
 - * *claet* (=calc_lum_and_evol_time) : stellar timescales and luminosities used in the fitting formulae
 - * *RLOF* : Roche-lobe overflow routines
 - * *single_star_functions* : routines which involve single-star evolution
 - * *binary_star_functions* : ditto for binary-star physics (mass transfer, tides etc.)
 - * *nucsyn*: nucleosynthesis (Rob's PhD + follow-up papers)
 - * *zfuncs* : fitting functions (based on *BSE*'s *zfuncs.f*)
 - * wind : stellar wind routines
 - * maths: mathematics, notably interpolate.c
 - *doc*/
 - * Documentation goes here
 - tbse
 - * Test script for a single system (single/binary star)
- Structures vs small arrays
 - instead of x[2], y[2], z[2] ... have {x,y,z}[2]
 - All data in stardata
 - Stars in stardata->star[1] and stardata->star[2]

- copy stars easily and fast (memcpy)
- NUMBER_OF_STARS stars: could be extended, some code assumes this is 2
- configure and Makefile
 - ./configure
 - make
 - make clean; make cleanall
 - make libbinary_c.so
- concept of single, static executable
 - good for use on multiple machines of same (similar?) architecture, e.g. 64-bit Linux clusters
- compile-time flags
 - binary_parameters.h
 - * default parameters, constants, limits etc.
 - * ADAPTIVE_RLOF
 - * WRLOF
 - * logging
 - * NUCSYN
 - nucsyn_parameters.h
 - * read if #define NUCSYN
 - API
 - * #define BINARY_C_API (in binary_parameters.h)
 - * some obscure things are broken with the API (probably affects nobody)
- Shared library
- Optimization (setup for grid runs)
- Recent updates
 - interpolate.c
 - API (C and FORTRAN)

Wednesday 9th

Accessing binary_c

- SVN access
- tree model: trunk and branches
- mutual agreement

How to use *binary_c*

- Interactive tutorial
 - *tbse* for a single system
 - *binary_grid* script for many systems (see below)
- There's a comprehensive manual, but it might be a bit out of date

- Mailing lists
 - Announcements

https://groups.google.com/forum/?hl=en-GB#!forum/binary_c-nucsyn-announce

- Development https://groups.google.com/forum/?hl=en-GB#!forum/binary_c-nucsyn-devel
- Should use these more!
- Online interface
 - http://www.ast.cam.ac.uk/~rgi/cgi-bin/binary4.cgi

The *binary_grid* software

- Perl (bi-directional pipe) grid
 - binary_c run in "batch mode"
 - Arguments sent to it (stdin) control the system parameters
 - Send a "go" to run the system
 - Output (stdout) is captured until "fin" received
 - Data stored in Perl hashes, native, fast.
 - Data is processed by Perl parsing function, statistics added up, processed, output (text and/or graphs)
 - All ASCII, no binary, hence cross-platform.
 - Threaded queue (Perl's Thread::Queue) for multi-CPU, usually memory bandwidth (not CPU) limited.
- Example grid script
 - *distribution_functions*
 - * Initial mass(es), q, period/separation, eccentricity etc.
 - spacing_functions
 - * how many points and where?
- Data extraction
 - On-the-fly vs post-processing
 - Hashes slow? Use MySQL (Fabian!), or CHI memory cache?
- Latest features
 - many speed optimisations
 - compressed buffer streams
 - better error handling
 - better handling of "failed" systems
- Visualisation (*WTTS2*)
 - demo!
 - Download from http://www.ast.cam.ac.uk/~rgi/window.html

Future of binary_c and friends

- Science that needs to be implemented
 - New stellar model grids?
 - Nucleosynthesis (new AGB models, extend M,Z range)
 - Rotation and mixing
 - Mass transfer (X-ray binaries, etc.)
 - Novae (efficiency)
 - SNeIa? (helium stars?)
 - Populations (field vs clusters)
 - Input distributions (IMF, etc.)
 - Cluster evolution (impact of dynamics on binaries)
 - More than two stars
 - ?
- Code updates
 - More modularization
 - Better timestepping
 - Set derivatives and apply them (like a real stellar code)
 - More than two stars (triples etc., see Hamers' work)
 - git instead of SVN? or something else?
- Visualisation
 - Update WTTS2 for 2D stars, more outreach opportunities (openGL?)
- Future projects
 - Galactic models / Galactic chemical evolution
 - * GCE code using binary_grid already exists
 - * needs debugging!
 - Updated nucleosynthesis
 - * Carolyn Doherty's new AGB/superAGB grid
 - * TZ objects
 - * update SN yields
 - * SNeIa (triples, wind accretion)
 - * Novae (nucleosynthesis and WD accretion efficiency)
 - Critical mass ratios
 - Selection effects
 - * Difficult!
 - * No systematic way to do this (yet?)
 - Model verification pipeline
 - * WTTS2 allows visual comparison
 - * Again, no systematic testing procedure (yet?)