1. History and Observations

Secchi discovered carbon stars in 1868. Most are of the very red "normal" N-type, but some are bluer, like K type stars. Fleming and Pickering labelled these the "R stars" in 1908. Both types are identified by molecular bands in their spectra.

Dominy 1984: R Stars

 $[C/Fe] \sim [N/Fe] \sim +0.5$ $[Fe/H] \sim [O/Fe] \sim -0.1$ $^{12}\text{C}/^{13}\text{C}\sim 6~(\sim \text{CNO eq.})$ $[s/\text{Fe}] \sim 0.0$ (i.e. not AGB)

McClure showed in 1997 that all of 22 R stars observed over 15 years are single stars.

Hipparcos: R stars are not rare $N_{\rm R}/N_{\rm red\,clump}=0.1\%$

R stars are ~ 1.5 mag dimmer than N stars: similar to the "red clump" of core helium burning stars. They are old, from the Galactic thick disk, and chemically normal except for enhanced C & N.

R-Star binary fraction: 0% c.f. Normal GK giants: 20%

2. Stellar Evolution Mystery

The N-type carbon stars asymptotic giant branch (AGB) stars, which are cool, bright and relatively well understood: $T_{\rm eff} \sim 3500 {\rm K}$ $L \sim 10^3 L_{\odot}$

The R stars are hotter $T_{\rm eff} \sim$ 4500K and dimmer $L \sim 10^2 L_{\odot}$. Conventional stellar evolution theory cannot explain their excess C or N.

- Why are all the R stars single stars?
 - ...They are merged binaries!
- How does the merger affect the chemistry?
- Why only in the R stars?

Introduction

The R stars look like normal K-type giants but are enhanced in carbon and nitrogen and are all single stars. This implies they were once binaries which have now merged. Helium ignition in a rapidly rotating stellar core may cause the C and N anomalies. We have simulated binary populations to investigate the merger rate in binary stars with helium cores which may give rise to the mysterious R stars...

What o Stars -

Conclusions

- Binary mergers of stars with helium cores are viable progenitors of the R stars
- Our models make too many R stars, but we included all possible He-core mergers: probably only a subset are
- We need to better understand the merger process
- More work on helium-core mergers is required

4. Binary Mergers: A Solution?

When a binary merges, its large orbital angular momentum results

3. Evolutionary Channel

Stars merge

Single star: Rotating helium core -

Binary: stars with helium cores \rightarrow

in a rapidly rotating sinale star. Rotation increases the core mass at helium ignition.

Abnormal helium ignition 0.65 Helium Ignition Temperatur 0.6 0.55 0.5 core 0.45 0.4 50 Helium core temperature (10⁶ K)

If the core ignites nears its outer edge enough 12C can be mixed into the stellar envelope to make a C-star.

In combination these results The pass through the hydrogenburning shell, so some is is observed.

resulting give us a route to the R stars: single star naturally has C mixed out of the core must the required C and N enhancements and otherwise a normal coreconverted to ¹³C and ¹⁴N, as helium burning star, with $L \sim 10^2 L_{\odot}$. Is it an R star?

We modelled populations of binary stars to count the number of helium-core mergers. We compared our results to the Hipparcos R to Red Clump number count ratio.

Our models show that the main merger of channel is that of a $\overset{\circ}{\varkappa}$ red giant with a helium white dwarf. This makes more stars than we need, so probably only a subset of these are Perhaps the R stars. some cores do not rotate quickly enough, some are too massive?

For the first time we have constructed a viable model of the R stars with which we can test our ideas regarding common envelope evolution in red giants, stellar mergers and rotation, the helium flash and the origin of these mysterious objects.

Robert Izzard¹, Simon Jeffery² and John Lattanzio³

- 1. Sterrenkundig Instituut, University of Utrecht, The Netherlands. E-mail R.G.Izzard@phys.uu.nl
 - 2. Armagh Observatory, Northern Ireland
 - 3. Monash University, Melbourne, Australia

For further details see Izzard, Jeffery and Lattanzio (2007) A&A in press, astro-ph/0705.0894