Carbon-rich metal-poor stars: witnesses of the first AGB stars

Thomas Masseron Institute of Astronomy, Cambridge

The Carbon Enhanced Metal-Poor (CEMP) stars phenomenon

-> Looking for first generation of stars in the Galactic halo but no stars with M > $0.8M_{\odot}$ have survived to the present day

AGB vs SNII

Properties of progenitors can be inferred via abundances (mass, etc...)

But large dispersion in heavy element abundances

But different CEMP stars...

Masseron et al. 2010

Double pollution

Existence of multiple systems (SNII + AGB + 0.8M) at low metallicity

Carbon enhanced metal-poor stars distribution in the Galaxy

Early IMF peak towards high metallicity But still require another source for C (massive rotating SNII)

Main picture:

From high resolution spectroscopic study, one can infer early Galactic & stellar physics:

- neutron source in AGBs is variable
- Existence of double-polluted stars
- Early IMF seems to be peak towards higher masses

Just one more thing...

Analysis Technique

Derive abundances by comparing synthetic spectrum synthesis with observation (Turbospectrum, Alvarez & Plez 1998, Plez 2012)

CH (predissociation)

CH: predissociation lines

Lithium

Masseron, Johnson, Lucatello, Karakas, Plez, Beers & Christlieb (2012)

Double pollution scenario

Double pollution?

In collaboration with Stephane Goriely

(Goriely & Siess 2005) [Rb/Sr]>o => high neutron density Sr [Rb/Sr]<o => low neutron density 88 Rb Rb 2.5 85 87 Kr Kr Kr [Fe/H] = -2.1— 5Mo 2 Rb Stable Unstable Pb ow density chain 1.5 [X/Fe] High density chain Sr 0.5 0 30 40 50 60 70 80 In collaboration with S. Goriely

Different s-processes ?

 $^{14}N(\alpha,\gamma)^{18}O(\alpha,\gamma)^{22}Ne(\alpha,n)^{25}Mg$ -> very efficient source of neutron

Summary

-> one must be careful with observations of CEMP stars
-> do not forget other effects such as rotation
-> call for a different s-process

Unfortunately I am not inspector Columbo, and there are more questions than answers are raised:

Bavs C in CEMP stars

Ba and C are correlated in CEMP stars ->qualitatively consistent with standard AGB nucleosynthesis but not quantitatively!

Metallicity effect on AGB nucleosynthesis?....