Production of p-process governed by the s-process in Type Ia SNe Gallino R. **Collaborators:** Travaglio C., Röpke F., Seitenzahl I., Hillebrandt W., HEINRICH UND ELO Rauscher T., Dauphas N. AEUS Nucleosynthesis in Asymptotic Giant Branch Stars July 14-18th 2014 Bad Honnef, Germany

Abstract

I discuss the possibility that single degenerate WDs accreting mass from a Giant companion up to the Chandrasekhar mass limit, and exploding as Type Ia SNe, provide a substantial contribution to Galactic p-nuclei, including the very debated pairs ⁹²Mo--⁹⁴Mo and ⁹⁶Ru--⁹⁸Ru.

In the Galactic chemical evolution scenario, also the two shortlived p-only nuclides, ⁹²Nb, ¹⁴⁶Sm, whose presence in the early solar system have been ascertained, can be reconciled.

So to say, the mistery of the ¹³C-pocket formation in TDU-TPAGB translates to an even double mistery for making the p-process.

Nucleosynthesis in Asymptotic Giant Branch Stars July 14-18th 2014 Bad Honnef, Germany

have differen

Martin Land and All

Nucleosynthesis in Asymptotic Giant Branch Stars

¹¹³In, ¹¹⁵Sn are p-only isotopes?
r-process contribution (Dillmann et al. 2008, Nemeth et al. 1994)

NO p-only nuclei

 ¹³⁸La produced by neutrino interaction on ¹³⁹La (Woosley et al. 1990)

> ¹⁵²Gd has large s-process contribution (Arlandini et al. 1999, Käppeler et al. 2011)

¹⁶⁴Er at least 50% contribution by s-process (Jaag & Kaeppeler 1996)

180Ta at least 50% by the s-process and 40%Travaglio et al. (2011)Wohr et al. 2007)

s-nucleosynthesis during accretion phase

Accreting white dwarfs as an alternate or additional source of s-process isotopes" (Iben, ApJ 243, 1981)

Previous Attempts

Howard,W.M., &Meyer, B. S. 1993, in Proc. 2nd International Symposium on Nuclear Astrophysics, Karlsruhe, Germany, ed. F. K[•]appeler & K. Wisshak (Bristol: Institute of Physics Publishing), 575 Howard, W. M., Meyer, B. S., & Woosley, S. E. 1991, ApJ, 373, L5

Kusakabe, M., Iwamoto, N., & Nomoto, K. 2005, Nucl. Phys. A, 758, 459 Kusakabe, M., Iwamoto, N., & Nomoto, K. 2011, ApJ, 726, 25

2D model DDT-a, 51200 tracers

Travaglio et al. 2011

Nucleosynthesis in Asymptotic Giant Branch Stars July 14-18th 2014 Bad Honnef, Germany

log(X_i/X_{i,©})

p-yields 2D vs 3D, solar Z

Galactic chemical evolution with a grid of 8 metallicities

Radiogenic p-nuclei

¹⁴⁶Sm (t_{1/2}=68 Myr, old 103 Myr)

The most important development with ¹⁴⁶Sm in the past several years with respect to p-nucleosynthesis is a drastic revision of its half-life from 103 Myr to 68 Myr. Using this new half-life and the most up-to-date meteorite measurements, the initial ¹⁴⁶Sm/¹⁴⁴Sm ratio at CAI formation is $(9.4 \pm 0.5) \times 10^{-3}$

⁹²Nb (t_{1/2} = 34.7 Myr)

⁹³Nb (a pure s-process nuclide) for ⁹²Nb. For the purpose of examining p-nucleosynthesis and comparing meteoritic abundances with predictions from GCE, it is more useful to normalize ⁹²Nb to a neighbour p-nuclide such as ⁹²Mo. The early solar system ⁹²Nb/⁹²Mo ratio is $(2.8 \pm 0.5) \times 10^{-5}$

Also and ⁹⁷Tc and ⁹⁸Tc radiogenic p-isotopes are included in our network but only upper limits are measured in CAI. Our predictions are consistent Nucleosynthesis in Asymptotic Giant Branch Stars July 14-18th 2014 Bad Honnef, Germany

Radiogenic 9²Nb

Travaglio et al. (2014, ApJ submitted)

Radiogenic

146Sm

Travaglio et al. (2014, ApJ submitted)

92Nb and 146Sm in SNIa

	Meteorite	GCE
92Nb/92Mo	$(2.8 \pm 0.5) \times 10^{-5}$	1.7- 3.1x10 ⁻⁵

146 Sm/ 144 Sm (9.4 ± 0.5)x10⁻³ 1.7x10⁻²

Rauscher et al. (2013), new 148Gd(χ, α)144Sm rate.

We found that the obtained

Orace 1

¹⁴⁶Sm/¹⁴⁴Sm ratio is compatible with the meteoritic value when using a ¹⁴⁸Gd(γ, α) rate based either on a fit to the Somorjai et al. (1998) (α, γ) cross sections or on the recent rate including an additional reaction channel as presented by Rauscher (2013). Concerning

Reactions	Rate set MIN	Rate set MAX
91 Zr(p, γ) 92 Nb	Ţ	↑
92 Zr(p, γ) 93 Nb	Ļ	, ↓
$^{92}\mathrm{Zr}(\mathrm{p,n})^{92}\mathrm{Nb}$	Ļ	1
$^{91}{ m Nb}({ m n},\gamma)^{92}{ m Nb}$	↑	\downarrow
$^{92}\mathrm{Nb}(\mathrm{n},\gamma)^{93}\mathrm{Nb}$	\downarrow	1
$^{91}\mathrm{Nb}(\mathrm{p},\gamma)^{92}\mathrm{Mo}$	↑	\downarrow
$^{93}\mathrm{Nb}(\mathrm{p,n})^{93}\mathrm{Mo}$	\uparrow	\downarrow
93 Mo(n, γ) 94 Mo	\uparrow	\downarrow
GCE	1.660×10^{-5}	$3.118 imes 10^{-5}$

Travaglio et al. (2014, ApJ submitted)

p-yields changing ¹³C and fixing Z

$2\mathbf{D}$ vs $3\mathbf{D}$

Nucleosynthesis in Asymptotic Giant Branch Stars July 14-18th 2014 Bad Honnef, Germany

Same lan