Tracing the chemistry in the clumpy shells around carbon-rich AGB-stars with the JVLA

Denise Keller

Karl Menten, Tomasz Kamiński, Elvire De Beck, Mark Claussen

Submillimeter Astronomy Group, MPIfR, Bonn National Radio Astronomy Observatory, Socorro, NM, USA

Max-Planck-Institut für Radioastronomie

Bonn-Cologne Graduate School of Physics and Astronomy

Overview

- AGB-stars and their circumstellar envelopes (CSE)
- The carbon star IRC+10216
- Carbon chemistry
- The JVLA survey of IRC+10216
- Results & future work

AGB stars and their circumstellar envelopes

Circumstellar envelope

Adapted from Habing&Olofsson 2003, Maercker 2009, Decin et al. 2010 and J. Hron

Circumstellar envelope

- Evolution O-rich to C-rich
- Observations of molecules in CSE trace
 - Chemical processes
 - Physical conditions
 - Abundances and nucleosynthesis
 - dust-gas chemistry
 - ➡ UV-induced chemistry

The carbon star IRC+10216

- Prototypical carbon-rich AGB-star a.k.a. CW Leo
- Cool and luminous: ~2700 K, ~10 000 L $_{\circ}$
- Pulsation period: ~630 days
- Nearby: ~130 pc
- High mass-loss rate: $2x10^{-5}$ M $_{\odot}$ yr⁻¹
- Mass estimate: ~ 1 2 M $_{\odot}$
- C/O ~ 1.4
- more than 80 molecules detected

Molecule	Abundance relative to H ₂	Reference
	$1-5 R_* \rightarrow 2 \times 10^{15} \text{ cm}$	
CS	$4 \times 10^{-6} \rightarrow 7 \times 10^{-7}$	(1)
SiO	1.8×10^{-7}	(1)
SiS	$3 \times 10^{-6} \rightarrow 1.3 \times 10^{-6}$	(1)
NaCl ^a	1.8×10^{-9}	(1)
KCl ^a	$7 \times 10^{-10} \rightarrow 5 \times 10^{-10}$	(1)
AlCl ^a		(1)
AlF	1×10^{-8}	(1)
NaCN ^a		(1)
СО		(1)
C_2H_2		(2)
HCN		(2)
CH_4	3.5×10^{-6}	(3)
NH ₃		(4)
SiH ₄	2.2×10^{-7}	(3)
SiC ₂		(5)
H ₂ O	1×10^{-7}	(6)
HCl	1×10^{-7}	(7)
HCP		(8)
C_2H_4		(9)
HF		(7)
PH ₃		(10)
H_2S		(11)

Agúndez et al. 2012

Bad Honnef, 17 July 2014

The carbon star IRC+10216

- Isotopic ratios from isotopologues
- selective effects:
 - line opacitiesphotodissociationchemical fractionationradiative excitation
- observations & chemical models
 - molecular abundance distribution from observations and models inconsistent
- density-enhanced shells: gas & dust

Ratio	Value	1σ	Ref. ^a	Solar ^b
Na ³⁵ Cl/Na ³⁷ Cl (7-6)	2.33	0.50	(1)	
Al ³⁵ Cl/Al ³⁷ Cl (15-14)	2.15	0.33	(1)	
Na ³⁵ Cl/Na ³⁷ Cl (8-7)	1.78	0.59	(2)	
Al ³⁵ Cl/Al ³⁷ Cl (10-9)	3.17	0.79	(3)	
Al ³⁵ Cl/Al ³⁷ Cl (11-10)	2.40	0.76	(3)	
$^{35}\text{Cl}/^{37}\text{Cl}^{\circ}$	2.30	0.24	(1)	3.13
$^{12}C/^{13}C$	45	3	(3)	89
14 N/ 15 N	> 4400		(4)	270
¹⁶ O/ ¹⁷ O	840	200	(5)	2610
¹⁶ O/ ¹⁸ O	1260	280	(5)	499
24 Mg/ 25 Mg	7.60	1.1	(6)	7.94
$^{24}Mg/^{26}Mg$	6.50	0.7	(6)	7.19
²⁹ Si/ ³⁰ Si	1.45	0.13	(3)	1.52
$^{28}{ m Si}/^{29}{ m Si}^{ m d}$	> 15.4		(3)	19.8
$^{34}S/^{33}S$	5.55	0.31	(3)	5.62
$^{32}S/^{34}S$	21.8	2.6	(3)	22.5

Kahane et al. 2000

Dinh-V-Trung&Lim 2008

The carbon star IRC+10216

• To what extent do density-enhanced shells influence the chemistry?

Carbon Chemistry

• most abundant molecules after H_2 in carbon-rich CSE: CO (8 x 10⁻⁴), C_2H_2 (8 x 10⁻⁵), HCN (4 x 10⁻⁵) Fonfria et al. 2008

Hydrocarbons

 $C_2H_2 + hv \rightarrow C_2H + H$ $C_2H + hv \rightarrow C_2 + H$

$$\begin{split} C_2H + C_2H_2 &\rightarrow C_4H_2 + H \\ C_4H_2 + hv &\rightarrow C_4H + H \\ C_2H + C_2H &\rightarrow C_4H + H \\ C_2H_2 + C_2 &\rightarrow C_4H + H \end{split}$$

Negative Ions $C_2H + e \rightarrow C_2H^- + hv$ $C_2H^- + H \rightarrow C_2H_2 + e$ Cyanopolyynes $HCN + hv \rightarrow CN + H$ $CN + C_2H_2 \rightarrow HC_3N + H$ $C_3N + C_2H_2 \rightarrow HC_5N + H$ $HCN + C_2H \rightarrow HC_3N + H$

- cover many transitions of key molecules around carbon stars
- improve general carbon chemistry network, also nitrogen chemistry

- Jansky Very Large Array, New Mexico, USA
- Interferometer: 27 antennas (25m)
- New receivers, new correlator
- Spectral and imaging survey of IRC+10216 in 2011 and 2013 (Mark Claussen, NRAO)
- Large coverage: 18 50 GHz
- Large bandwidth: 2 GHz
- ~ 51 hrs
- Unprecedented detail:
 - Resolution: ~1 arcsec
 - Sensitivity: ~1 mJy
- Data reduction with CASA
- Line identification

JVLA spectrum of IRC+10216

Denise Keller

Bad Honnef, 17 July 2014

Bad Honnef, 17 July 2014

Future Work

- Calibrate whole survey, imaging synthesis of all spectral lines
- Complementary observations (APEX, ALMA, PdBI, Herschel)
- Large sample of carbon stars ⇒ e.g. Elvire De Beck
- Radiative transfer models (RATRAN)
- Improve knowledge of morphology and chemistry
- Abundances, nucleosynthesis

