Lead in intrinsically s-process enriched post-AGB stars

Kenneth De Smedt Promotor: Hans Van Winckel

- Introduction
- An elaborate example
- Pb abundance results
- Theoretical solutions
- Conclusion

Lead

- Pb (Plumbum)
- Element 82
- Heaviest non-radioactive element

Why lead?

- End-product s-process
- Double magic neutron number

Solar abundances with s-process peaks

Why lead?

Observed Pb abundances:

Ideal test for theoretical AGB models

Based upon poorly constrained parameters:

- Mixing regimes
- Overshooting parameters
- Creation of ¹³C-pockets
- Rotation

Why lead?

Observed Pb abundances:

Ideal test for theoretical AGB models

Based upon poorly constrained parameters:

- Mixing regimes
- Overshooting parameters
- Creation of ¹³C-pockets
- Rotation

Expectation:

Large overabundances in metal-poor regimes (Gallino et al, 1998 ; Lugaro et al, 2012 ; ...)

Abundances: Intrinsic vs extrinsic

Intrinsic enrichment:

- Primary origin
- Single star evolution

Extrinsic enrichment:

- Secondary origin
- Binary system
- Evolved companion
- Mass transfer during AGB

Extrinsic: Pb overabundance

Strong Pb overabundances in CEMP stars:

- Van Eck et al, 2001, Nature, 412, 793
- Van Eck et al, 2003, A&A, 404, 219
- Behara et al, 2010, A&A, 513, 72

Extrinsic: Pb overabundance

Van Eck et al, 2003

Strong Pb line detection at 4057.807 Å

... and no Pb overabundance

But not in all CEMP stars:

- Aoki et al, 2001, ApJ, 561, 346
- Van Eck et al, 2003, A&A, 404, 219

... and no Pb overabundance

No clear Pb line detection at 4057.807 Å

Intrinsic sample

Before 2014

Only one Pb abundance study of intrinsically sprocess enriched star:

MACHO 47.2496.8

- Post-AGB star
- LMC object
- Metal-poor: [Fe/H] = -1.42

Intrinsic Pb abundance

Before 2014

Only one Pb abundance study of intrinsically sprocess enriched star:

MACHO 47.2496.8

- Post-AGB star
- LMC object
- Metal-poor: [Fe/H] = -1.42

No detected Pb overabundance

Reyniers et al, 2007

Post-AGB stars

- Photosphere dominated by atomic transitions
 - CNO
 - S-process up to Pb
- No more large amplitude pulsations
- Reflects entire AGB nucleosynthesis

Post-AGB stars

- Photosphere dominated by atomic transitions
 - CNO
 - S-process up to Pb
- No more large amplitude pulsations
- Reflects entire AGB nucleosynthesis

But unfortunately very rare ...

- Lifetime (100 10000 years)
- ± 1 for each 100 AGB stars

Magellanic Clouds

Why extra-galactic?

- Constrained distance to star: luminosity \rightarrow initial mass
- Range in metallicity

Surveys

• LMC - van Aarle et al., 2011, Kamath et al, in prep; SMC - Kamath et al., 2014

Spitzer image SMC

Post-AGB spectra

- Enriched vs non-enriched
- Atmospheric parameters
- Abundance determination

Elaborate example

SMC post-AGB J004441.04-732136.4

De Smedt et al, 2012

Spectrum of J004441.04 at Ba II line at 6496.897 Å

Analysis

- EW calculation
- Kurucz-Castelli atmospherical models

(Castelli & Kurucz, 2004)

- VALD linelists (NIST)
- LTE- abundance analysis code MOOG

(Sneden, 1973)

Analysis: Atmospheric parameters

Atmospheric parameters (via Fe lines):

- Effective temperature
- Surface gravity
- Microturbulent velocity
- Metallicity [Fe/H]

Abundance analysis

- Single lines
- Spectral synthesis for blends
- Element over Fe ratio shows enrichment
- Low metallicity: [Fe/H] = -1.3

3.5 3.0 2.5 2.0 [X/Fe] 1.5 1.0 0.5 0.0 -0.5 40 Z 50 70 80 10 20 30 60 0

De Smedt et al, 2012

Element over Fe ratio

SED and initial mass

- SED gives luminosity
- Initial mass via theoretical post-AGB tracks (update needed)
- Low initial mass ($\pm 1.3 M_{\odot}$)

De Smedt et al, 2012

Observations vs models

Upper limit Pb abundance via synthesis Strong Pb discrepancy

De Smedt et al, 2014

Model predictions vs observations

Pb abundance vs model

Other Pb results

LMC star J051848.84-700247.0:

- spectral twin of SMC J004441
- Low-metallicity ([Fe/H] = -1.0)
- Low-mass ($\pm 1.3 M_{\odot}$)

- Pb abundance upper limit
- No overabundance

J051848 Pb vs models

Mount Stromlo models for 1.3 M_{\odot} with [Fe/H] = -1.0

Three LMC objects

- Low-mass (< 1.5 M_{\odot})
- Metal-poor ([Fe/H] ≈ -1.2)

Pb abundance upper limits.2)No Pb overabundance

Preliminary: Galactic objects

- Part of sample of intrinsically enriched objects
- Range of metallicities but no distance
- Pb abundance upper limit

Preliminary: Galactic objects

Reyniers et al. 2007

Reyniers et al. 2004

General conclusion

From observations:

Current AGB models based on ¹³C-pocket:

- diffusive overshooting
- base of convective envelope
- during third dredge-up

Problems reproducing low [Pb/Fe] in metal-poor stars Increase sample of studied objects: statistics

Explore alternative processes to explain abundance profiles:

New mixing algorithms
(¹³C-pocket mass and distribution)

- Explore alternative processes to explain abundance profiles:
- New mixing algorithms (¹³C-pocket mass and distribution)
- Effect rotational shear (see talk S. Cristallo)

- Explore alternative processes to explain abundance profiles:
- New mixing algorithms (¹³C-pocket mass and distribution)
- Effect rotational shear (see talk S. Cristallo)
- Effect of internal gravity wave mixing

- Explore alternative processes to explain abundance profiles:
- New mixing algorithms (¹³C-pocket mass and distribution)
- Effect rotational shear (see talk S. Cristallo)
- Effect of internal gravity wave mixing

Conclusions

- No Pb overabundance in studied intrinsically enriched post-AGB stars
- Study alternative processes for ¹³C-pocket formation
- Increase sample of studied intrinsically enriched post-AGB stars

Thank you

Questions?