

Nucleosynthesis in AGB stars traced by isotopic ratios

Rutger DE NUTTE

L. Decin^{1,4}, H. Olofsson², S. Ramstedt³, A. de Koter^{1,4}

¹Instituut voor Sterrenkunde, Katholieke Universiteit Leuven, Belgium ²Onsala Space Observatory, Dept. of Earth and Space Sciences, Chalmers University of Technology, Sweden ³Department of Physics and Astronomy, Uppsala University, Sweden ⁴Astronomical Institute Anton Pannekoek, University of Amsterdam, The Netherlands

Contents

1. Introduction

- i. Dredge-up events
- ii. Extra mixing?

2. Observations

- i. Possibilities
- ii. Extended CSE
- iii. Carbon monoxide
- iv. Long wavelength astronomy
- v. Current sample: from lines to ratios
- 3. Results
- 4. Conclusions and future work

Introduction

Oxygen rare isotopes as tracers

Dredge-up (DU) events

Dredge-up (DU) events: FDU

- During first red giant branch ascend
- Convective envelope penetrates partial H-burning shell
- RESULT (surface composition):

Dredge-up (DU) events: SDU

- For $M_* > 4-5M_{\odot}$ (dependent on composition)
- During formation of degenerate CO core
- RESULT (surface composition):

Dredge-up (DU) events: TDU

- Following He shell flash $(1M_{\odot} < M_* < 4M_{\odot})$
- M (C/O<1) \rightarrow C (C/O>1)
- Multiple cycles (thermal pulses TP's): 10³ 10⁵ yr
- RESULT (surface composition):

Extra mixing?

• Really necessary?

(e.g. Karakas et al. 2010, Busso et al. 2010, Charbonnel & Lagarde 2010, etc.)

Extra mixing?

Really necessary?

(e.g. Karakas et al. 2010, Busso et al. 2010, Charbonnel & Lagarde 2010, etc.)

- Possibilities:
 - Rotational mixing
 - Thermohaline mixing
 - Gravity waves
 - Magnetic buoyancy

Extra mixing?

• Really necessary?

(e.g. Karakas et al. 2010, Busso et al. 2010, Charbonnel & Lagarde 2010, etc.)

• Possibilities:

- Rotational mixing
- Thermohaline mixing
- Gravity waves
- Magnetic buoyancy

Predict different isotopic ratios,

- testable from observations
 - ! O-isotopes !

Observational selection effects

Observations of the extended circumstellar envelope (CSE)

 Study effect of nucleosynthesis and Dus (+extra mixing) by means of isotopic ratios

- Study effect of nucleosynthesis and DUs by means of isotopic ratios
 - -> Possibilities:

-Interstellar gas measurements

(e.g. Wannier et al. 1976, Penzias 1981, etc.)

- Study effect of nucleosynthesis and DUs by means of isotopic ratios
 - -> Possibilities:

-Interstellar gas measurements:

Molded by generations of stars of various types (⇒ no relevance to single star evolution models, measured ¹⁷O/¹⁸O values very constant ~5x smaller than those already obtained in AGB CSEs e.g. Penzias 1981)

- Study effect of nucleosynthesis and DUs by means of isotopic ratios
 - -> Possibilities:
 - -Interstellar gas measurements
 - Presolar grains

(e.g. Nittler et al. 1997, etc.)

- Study effect of nucleosynthesis and DUs by means of isotopic ratios
 - -> Possibilities:
 - -Interstellar gas measurements
 - -Presolar grains:

Thought to retain isotopic compositions of stellar gases from which they condensed **BUT**: also reflects complex interplay of galactic chemical evolution (spallation) + lab pollution + hard to differentiate origin of grain

Observations: presolar grains

Nittler et al. 1997, ApJ 483, 475

- Study effect of nucleosynthesis and DUs by means of isotopic ratios
 - -> Possibilities:
 - -Interstellar gas measurements
 - (Presolar grains)
 - Dense outer layers of stellar atmosphere

- Study effect of nucleosynthesis and DUs by means of isotopic ratios
 - -> Possibilities:
 - -Interstellar gas measurements
 - (Presolar grains)
 - Dense outer layers of stellar atmosphere:
 Obscured by wind (little to no information), only possible for low mass-loss rates (incomplete sample)

- Study effect of nucleosynthesis and DUs by means of isotopic ratios
 - -> Possibilities:
 - -Interstellar gas measurements
 - (Presolar grains)
 - (Dense outer layers of stellar atmosphere)
 - Teneous extended CSE

(best effort so far: Kahane et al. 1992
→ 5(4)! C-rich envelopes)

AGB extended CSE

Adapted from Habing & Olofsson, 2003

AGB extended CSE

Adapted from Habing & Olofsson, 2003

AGB extended CSE

Adapted from Habing & Olofsson, 2003

Carbon monoxide

• Highly abundant (both in C- as M-type stars)

Carbon monoxide

- Highly abundant (both in C- as M-type stars)
- Exceptionally stable: non-reactive to dust and not easily photodissociated

Carbon monoxide

- Highly abundant (both in C- as M-type stars)
- Exceptionally stable: non-reactive to dust and not easily photodissociated
- Easily interpreted spectrum:

27

Long wavelength astronomy

- IRAM 30m (Pico Veleta)
 80 -370 GHz
 - J = 1->0 J = 2->1 J = 3->2

HPBW: 2460 / f [GHz]

Photo courtesy of Institut de RadioAstronomie Millimétrique

Long wavelength astronomy

 APEX Atacama Pathfinder EXperiment (12m)

210 -500 GHz

- J = 2->1
- J = 3->2
- J = 4->3

Photo courtesy of Atacama Pathfinder EXperiment

HPBW: 6240 / f [GHz]

Long wavelength astronomy

Herschel PACS/HIFI

Heterodyne Instrument for the Far Infrared HIFI: 480 – 1250 GHz

Photometer Array Camera and Spectrometer PACS:

1400 – 5000 GHz

Photo courtesy of European Space Agency

Observations: Current sample

	¹³ CO	¹³ CO	$C^{17}O$	$C^{17}O$	$C^{18}O$	$C^{18}O$
	(1-0)	(2-1)	(1 - 0)	(2-1)	(1 - 0)	(2-1)
	110.2GHz	220.4GHz	112.4GHz	224.7GHz	109.8GHz	219.6GHz
C-stars						
AFGL 3068	X	X	/	x	x	X
CW Leo	X	X	X	x	X	X
II Lup		X		/		/
LP And	X	X	X	X	(X)	X
R Lep		X		1		/
RV Aqr		X		/		/
RW LMi	X	X	x	x	/	X
U Hya		X		/		
V384 Per	x	X	x	x	/	X
Y CVn	X	X	/	/	/	
M-stars						
GX Mon	X	X	(X)	x	(X)	X
IK Tau		x		/		X
IRC+10365	X	X	/	/	/	X
IRC+50137	X	X	/		X	X
IRC+60169	X	X	()		()	(/)
IRC-30398		X				/
R Aql		X		/		
R Cas	X	X	()	/	/	(/)
R Dor		X		/		
RT Vir		x				/
RX Boo	x	x		()		/
W Hya		X		/		
WX Psc	X	x	/	X	X	X
S-stars						
W Aql		X		/		X
χ Cyg	X	X	X	X	X	X

- ~220 h observing time
- 8 sources for which we can already perform a ¹⁷O/¹⁸O study (5 C, **2 M**, **1 S**)
- +1 APEX run ongoing
 +1 APEX run starting

next period

I(C¹⁷O)/I(C¹⁸O) corr. for Einstein A (~v⁻²) ↓ (C¹⁷O)/(C¹⁸O)

• Frequencies relatively close

I(C¹⁷O)/I(C¹⁸O) corr. for Einstein A (~v⁻²) ↓ (C¹⁷O)/(C¹⁸O)

- Frequencies relatively close
- Line excitation mainly collisional

 $I(C^{17}O)/I(C^{18}O)$ corr. for Einstein A (~v⁻²) (C¹⁷O)/(C¹⁸O)

- Frequencies relatively close
 Line excitation mainly collisional (for low J)
- Optically thin
- Same line forming regions

 $I(C^{17}O)/I(C^{18}O)$ corr. for Einstein A (~v⁻²) (C¹⁷O)/(C¹⁸O)

- Frequencies relatively close
 Line excitation mainly collisional (for low J)
- Optically thin

- } readily checked
- Same line forming regions With non-LTE radiative

transfer code (GASTRoNOom: Decin et al. 2006)

I(C¹⁷O)/I(C¹⁸O) corr. for Einstein A (~v⁻²) ↓ (C¹⁷O)/(C¹⁸O)

- Frequencies relatively close
- Optically thin
- Same line forming regions

↓ (17O)/(18O)

 $(C^{17}O)/(C^{18}O)$

 Chemical fractionation vs.
 Selective photodissociation

(¹⁷O)/(¹⁸O)

 $(C^{17}O)/(C^{18}O)$

 Chemical fractionation vs.
 Selective photodissociation (See e.g. Mamon et al. 1988)

Results

Isotopic abundances

Link with stellar evolution

Combine with $^{12}C/^{13}C$ (Ramstedt & Olofsson 2014) 0/170 **Confront with** stellar evolution models (FRANEC code Cristallo et al. 2009)

Concluding remarks and future work

Conclusions

Conclusions

- Oxygen isotopes = excellent tracers for the efficiency of nucleosynthetic and DU processes
- CSE observations most probably best option
- Extremely weak lines make getting an adequate sample a long and tedious process
- Quick and easy line ratio study possible,
 BUT need full non-LTE radiative transfer combined with high-J lines for definitive results

Future work

- Increase sample size
- Combine with ¹²C/¹³C (Ramstedt & Olofsson 2014)
- Full non-LTE radiative transfer +PACS/HIFI (GASTRoNOoM Decin et al. 2006)
- Beyond IRC+10216 \rightarrow **ALMA**

Comic Sans References

- Boothroyd et al. 1999, ApJ 510, 232
- Busso et al. 2010, ApJ 717, L47
- Charbonnel & Lagarde 2010, A&A 522, A10
- Cristallo et al. 2009, ApJ 696, 797
- Decin et al. 2006, A&A 456, 549
- Decin 2010c, Nature, 467, 64
- Duari et al. 1999, A&A 341, L47
- Gaidos et al. 2009, ApJ 705, L163
- Glassgold 1996, ARA&A 34, 241
- Harris & Lambert 1984, ApJ 285, 674
- Harris & Lambert 1985, ApJ 299, 375
- Harris et al. 1987, ApJ 316, 294

- Kahane et al. 1992, A&A 256, 235
- Kahane et al. 2000, A&A 357, 669
- Karakas et al. 2010, ApJ 713, 374
- Maeder 1992, A&A 264, 105
- Mamon et al. 1988, ApJ 328, 797
- Nittler et al. 1997, NuPhA 621, 113
- Nittler et al. 2003, E&PSL 209, 259
- Nittler et al. 2009, PASA 26, 271
- Smith & Lambert 1986, ApJ 311, 853

