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Oxygen rare isotopes as tracers
Introduction

3



4

Dredge-up (DU) events

4

Busso et al. 1999, 
ARA&A 37, 239
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Dredge-up (DU) events: FDU

• During first red giant branch ascend
• Convective envelope penetrates partial H-burning shell

• RESULT (surface composition): 

5

16O/17O

16O/18O

t

16O/18O

t

17O/18O



6

Dredge-up (DU) events: SDU

• For M* > 4-5M☉ (dependent on composition)

• During formation of degenerate CO core

• RESULT (surface composition): 
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Dredge-up (DU) events: TDU
• Following He shell flash (1M  ☉< M* < 4M☉)

• M (C/O<1) → C (C/O>1)
• Multiple cycles (thermal pulses TP's): 103 – 105 yr

• RESULT (surface composition): 
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Extra mixing?

8

Karakas et al. 2010, 
ApJ 713, 374
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Extra mixing?

● Really necessary?
(e.g. Karakas et al. 2010, Busso et al. 2010, Charbonnel 
& Lagarde 2010, etc.)
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Extra mixing?

● Really necessary?
(e.g. Karakas et al. 2010, Busso et al. 2010, Charbonnel 
& Lagarde 2010, etc.)

● Possibilities:
– Rotational mixing

– Thermohaline mixing

– Gravity waves

– Magnetic buoyancy
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Extra mixing?

● Really necessary?
(e.g. Karakas et al. 2010, Busso et al. 2010, Charbonnel 
& Lagarde 2010, etc.)

● Possibilities:
– Rotational mixing

– Thermohaline mixing

– Gravity waves

– Magnetic buoyancy
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}
Predict different 
isotopic ratios, 
testable from 
observations 
! O-isotopes !
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Observations of the extended 
circumstellar envelope (CSE)

Observational selection effects
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Observations

• Study effect of nucleosynthesis and Dus 
(+extra mixing) by means of isotopic ratios
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Observations

• Study effect of nucleosynthesis and DUs by 
means of isotopic ratios
-> Possibilities:

– Interstellar gas measurements 
(e.g. Wannier et al. 1976, Penzias 1981, etc.)
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Observations

• Study effect of nucleosynthesis and DUs by 
means of isotopic ratios
-> Possibilities:

– Interstellar gas measurements:
Molded by generations of stars of various types

(⇒ no relevance to single star evolution models, 
measured 17O/18O values very constant ~5x smaller 
than those already obtained in AGB CSEs
e.g. Penzias 1981)
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Observations

• Study effect of nucleosynthesis and DUs by 
means of isotopic ratios
-> Possibilities:

– Interstellar gas measurements
– Presolar grains

(e.g. Nittler et al. 1997, etc.)
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Observations

• Study effect of nucleosynthesis and DUs by 
means of isotopic ratios
-> Possibilities:

– Interstellar gas measurements
– Presolar grains:

Thought to retain isotopic compositions of stellar gases 
from which they condensed
BUT: also reflects complex interplay of galactic 
chemical evolution (spallation) + lab pollution
+ hard to differentiate origin of grain 
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Observations: presolar grains
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Nittler et al. 1997, 
ApJ 483, 475
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Observations

• Study effect of nucleosynthesis and DUs by 
means of isotopic ratios
-> Possibilities:

– Interstellar gas measurements
– (Presolar grains)
– Dense outer layers of stellar atmosphere
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Observations

• Study effect of nucleosynthesis and DUs by 
means of isotopic ratios
-> Possibilities:

– Interstellar gas measurements
– (Presolar grains)
– Dense outer layers of stellar atmosphere:

Obscured by wind (little to no information), only possible 
for low mass-loss rates (incomplete sample)
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Observations

• Study effect of nucleosynthesis and DUs by 
means of isotopic ratios
-> Possibilities:

– Interstellar gas measurements
– (Presolar grains)
– (Dense outer layers of stellar atmosphere)
– Teneous extended CSE

(best effort so far: Kahane et al. 1992
→ 5(4)! C-rich envelopes)
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AGB extended CSE
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Adapted from
Habing & Olofsson, 2003
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AGB extended CSE
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Adapted from
Habing & Olofsson, 2003
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AGB extended CSE
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Adapted from
Habing & Olofsson, 2003
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Carbon monoxide

● Highly abundant (both in C- as M-type stars)
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Carbon monoxide

● Highly abundant (both in C- as M-type stars)

● Exceptionally stable:
non-reactive to dust and not easily photodissociated
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Carbon monoxide

● Highly abundant (both in C- as M-type stars)

● Exceptionally stable:
non-reactive to dust and not easily photodissociated

● Easily interpreted spectrum:
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Long wavelength astronomy

● IRAM 30m
(Pico Veleta)

80 -370 GHz
J = 1->0
J = 2->1
J = 3->2

HPBW: 2460 / f [GHz]
Photo courtesy of Institut de 
RadioAstronomie Millimétrique 
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Long wavelength astronomy

● APEX Atacama
Pathfinder
EXperiment (12m)

210 -500 GHz

HPBW: 6240 / f [GHz]

Photo courtesy of Atacama 
Pathfinder EXperiment

J = 2->1
J = 3->2
J = 4->3
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Long wavelength astronomy

● Herschel PACS/HIFI

Heterodyne Instrument
for the Far Infrared HIFI:
480 – 1250 GHz

Photometer Array Camera 
and Spectrometer PACS:

1400 – 5000 GHz 
Photo courtesy of European 
Space Agency
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Observations: Current sample

31

● ~220 h observing 
time

● 8 sources for which 
we can already 
perform a 17O/18O 
study
(5 C, 2 M, 1 S) 

● +1 APEX run ongoing
+1 APEX run starting 
next period
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From lines to ratios
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From lines to ratios

17O/18O
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From lines to ratios

I(C17O)/I(C18O)  corr. for Einstein A (~ν-2)

(C17O)/(C18O)
● Frequencies relatively close 
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From lines to ratios

I(C17O)/I(C18O)  corr. for Einstein A (~ν-2)

(C17O)/(C18O)
● Frequencies relatively close
● Line excitation mainly collisional       (for low J)
● Optically thin
● Same line forming regions

} readily checked
 With non-LTE radiative 
transfer code
(GASTRoNOom: 
Decin et al. 2006)
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Line forming regions
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From lines to ratios

I(C17O)/I(C18O)  corr. for Einstein A (~ν-2)

(C17O)/(C18O)
● Frequencies relatively close
● Line excitation mainly collisional       (for low J)
● Optically thin
● Same line forming regions
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From lines to ratios

(C17O)/(C18O)  

(17O)/(18O)
● Chemical fractionation 

              vs.
Selective photodissociation 
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From lines to ratios

(C17O)/(C18O)  

(17O)/(18O)
● Chemical fractionation 

              vs.
Selective photodissociation 

(See e.g. Mamon et al. 1988)
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Isotopic abundances
Results
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Link with stellar evolution

45
Karakas et al. 2010, 
ApJ 713, 374

Combine with 
12C/13C
(Ramstedt & 
Olofsson 2014)

       ↓
Confront with 
stellar evolution 
models
(FRANEC code 
Cristallo et al. 
2009)
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Conclusions
Concluding remarks and future work
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Conclusions
● Oxygen isotopes = excellent tracers for the efficiency of 

nucleosynthetic and DU processes

● CSE observations most probably best option

● Extremely weak lines make getting an adequate sample 
a long and tedious process

● Quick and easy line ratio study possible, 
BUT need full non-LTE radiative transfer combined with 
high-J lines for definitive results
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Future work

● Increase sample size
● Combine with 12C/13C (Ramstedt & Olofsson 2014)

● Full non-LTE radiative transfer 
+PACS/HIFI (GASTRoNOoM Decin et al. 2006)

● Beyond IRC+10216
→ ALMA
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