

- 1. Why population synthesis? *QUANTITATIVE, STATISTICAL* See Selma's talk for examples.
- 2. Why not use a detailed stellar code to solve everything?
- 3. What do we have now? *binary_c/nucsyn*
- 4. What do we need in the (near) future?
- 5. What are we doing about it?

Robert Izzard (AlfA, Bonn) Binary Population Synthesis: Now and Next

Why not use a detailed code?

Why not use a detailed code?

Robert Izzard (AlfA, Bonn)

Parameter Spaces		Ì						
	M, Z, $v_{ m rot}$	M ₁ , M ₂ , Z, v _{rot} a/P, e, J _{orb}						
Mixing	$\sigma_{\rm conv}$, $\sigma_{\rm thermoh}$, $\sigma_{\rm rot}$	$\sigma_{\rm conv}$, $\sigma_{\rm thermoh}$, $\sigma_{\rm rot}$, $\sigma_{\rm tides}$	_					
Nucleo	$\langle \sigma \mathbf{v} \rangle$	$\langle \sigma v \rangle$	_					
ΔMass	$\dot{M}_{ m wind}$, $v_{ m kick}$	$\dot{M}_{ m wind}$, $\dot{M}_{ m tides}$, $v_{ m kick}$	_					
		$\dot{M}_{ m RLOF}$, $lpha_{ m CE}$, $\lambda_{ m CE}$						
		$\dot{M}_{ m wind-acc}$						
<i>B</i> & Δangmom	$B_{\rm r}$ (σ_B), $J_{\rm wind}$, $J_{\rm B}$	B, (σ_B) , J_{wind} , J_{B} ,	_					
		$J_{ m tides}$, $J_{ m RLOF}$, $J_{ m wind-acc}$						
	+selection effects	+selection effects						
Robert Izzard (AIFA, Bonn) Binary Population Synthesis: Now and Next 6 / 14								

Robert Izzard (AlfA, Bonn)

Robert Izzard (AlfA, Bonn)

Recent updates: RLOF, grid, documentation

- Physics: Improved "Adaptive RLOF", interesting results: See Selma's talk
- Software: Updates to improve grid: Parallel threads More efficient grid algorithm
- Documentation:
 - binary_c/nucsyn already documented binary_grid now fully documented Essential!
- Code Setup (soon)
 Subversion
 Mailing lists
 Growing user base

Online resources

http://www.astro.uni-bonn.de/~izzard/binary_c.html

binary_c/nucsyn results A frontend to the <u>binary_c/nucsyn</u> code												
Evolution Time (MYr)	Star 1 mass (M⊙)	Star 2 mass (M⊙)	Star 1 type	Star 2 type	Separation (R⊙)	Period	Eccentricity	Star 1 R/ROL	Star 2 R/ROL	What's happening?		
0.0000	14.000	6.000	Main Sequence	Main Sequence	100.000	25.92	0.00	0.106	0.095	In the beginning there was a star	¹ H 7.00e-01 7.00e-01 ⁴ He 2.00e-01 2.00e-01 ¹² C 3.19e-03 3.19e-03 ¹⁴ H 1.18e-03 1.18e-03 ¹⁴ Po 1.01e-02 1.01e-03 ²⁶ Po 1.22e-03 1.22e-03 Ra 1.44e-08 1.44e-08	• •
14.0936	13.718	6.002	Hertzsprung Gap	Main Sequence	101.340	26.63	0.00	0.256		Stellar Type Change	¹ H 7.00e-01 7.00e-01 ⁴ He 2.00e-01 2.00e-01 ¹² C 3.15e-03 3.15e-03 ¹⁴ Hi 1.16e-03 1.16e-03 ¹⁶ Di 1.01e-02 1.01e-02 ¹⁶ Di 1.01e-02 1.01e-03 ¹⁶ Fe 1.22e-03 1.22e-03 [0a 1.04e-08 1.04e-08	
14.1165	13.715	6.003	Hertzsprung Gap	Main Sequence	101.384	26.64	0.00	1.000		Begin Roche Lobe Overflow	² H. 2.00e-01 2.00e-01 ⁴ He 2.80e-01 2.80e-01 ¹² C 3.19e-03 3.19e-03 ¹⁴ N 1.16e-03 1.16e-03 ¹⁴ D 1.01e-02 1.01e-02 ²⁴ Fe1.22e-03 1.22e-03 [0 1.04e-08 1.04e-08	Unit of the second seco
14.1165	13.715	6.003	Hertzsprung Gap	Main Sequence	101.384	26.64	0.00	1.000	0.103	Common Envelope Evolution	² H 7.00e-01 7.00e-01 ⁴ He 7.80e-01 2.80e-01 ¹² C 3.1%e-03 3.1%e-03 ¹⁴ H 1.1%e-03 1.1%e-03 ¹⁴ D 1.01e-02 1.01e-02 ²⁶ F ₂₀ 1.23e-03 1.23e-03 Be 1.64e-08 1.64e-08	<

Robert Izzard (AlfA, Bonn)

Limitations

Fitting formula approach:

- STABLE and FAST ... but limited.
- Only have fits to M and Z.
- $0.1 \le M \lesssim 50 \,\mathrm{M_{\odot}}$, $10^{-4} \le Z \le 0.03$
- No (reliable) chemistry in massive stars
- Cannot explore many big uncertainties e.g.
 - Mixing: $\sigma_{\rm rot}$, $\sigma_{\rm thermo}$ etc.
 - Nucleosynthesis and mixing
 - B field production, destruction
 - Angular momentum distribution
- New observations drive modelling efforts

Binary Population Synthesis: Now and Next

Robert Izzard (AlfA, Bonn)

Scientific rationale: Do we need a new code? If we want to

- 1. Reproduce "Hunter" plots
- 2. Constrain strength of mixing mechanisms
- 3. Model angular momentum

in populations of massive binaries

 Extend to problems beyond main-sequence O/B-type stars (LBV, WR, NSs, BHs, X-ray binaries, GRBs etc. etc....)

Then **YES** we do.

... lots of helper software already exists. (And not limited to *massive* binaries)

Robert Izzard (AlfA, Bonn) Binary Population Synthesis: Now and Next

Technical Challenges

Can it be done? ... Must stay FAST but must do MORE.

binary_c runtime $\sim 0.1 \, s$

Speed up:

- cluster/multi-core machines
- GPUs?
- Better algorithm:
 - Separate mixing and stellar evolution

Slow down:

- Model conv/thermohaline/rotational mixing shell by shell
- Stellar evolution tables: large data sets
 - Computer science problem?
- Time & smart people to develop algorithms:
 - First step: Herbert Lau arrives 2011
 - Bonn group has detailed (binary) models

Robert Izzard (AlfA, Bonn)

Binary Population Synthesis: Now and Next

Core"2 Extreme quad-core

Conclude

- We have a tool, binary_c/nucsyn, to make progress now
- http://www.astro.uni-bonn.de/~izzard/binary_c.html
- binary_c/nucsyn has a finite shelf life
- We need to start planning for the future
- I have already been doing this...
- but what do you think should be included?
- ... are you interested in helping?