Common Envelopes

Robert Izzard

Argelander Institute For Astronomy University of Bonn

> With help from: Thomas Tauris Christopher Tout Philip Hall

Common Envelopes - IAUS283 Planetary Nebulae

Argelander Institut

stronomie

Common Envelope Evolution i. Physics: Energy and Angular Momentum ii.Detailed CEE models iii.Parameterised CEE models iv.Constraints v.Other objects vi.Future

Robert Izzard

Common Envelopes – IAUS283 Planetary Nebulae

Argelander

stronomie

Institut

What I am convinced I know for sure about common envelope evolution:

Something happens...

Robert Izzard

Common Envelopes - IAUS283 Planetary Nebulae

Argelander Institut

stronomie

CE Phase I: Co-rotation lost

CE Phase III: slow inspiral

Drag \propto density and shear

Reduced density
Co-rotation near centre Both effects slow spiral in: Energy *radiated* away

$au_{ m decay} \sim 100-1000 ~ m yr$

But ejection continues!

Orbit is *much* smaller!

 $\Omega \stackrel{\text{Argelander}}{\square} \overset{\text{Argelander}}{\underset{fur}{\text{fur}}}$

Robert Izzard

Final Fate

Close Binary

with

PN???

Rapidly Spinning Giant -PN?

Robert Izzard

Common Envelopes – IAUS283 Planetary Nebulae

Argelander Institut für Astronomie

Detailed models of CEE

1D

Common Envelopes - IAUS283 Planetary Nebulae

elander

astitut

Astronomie

Robert Izzard

1D models

- Parameterise drag luminosity
- Include energy source in stellar code

Meyer & Meyer-Hofmeister 1978 Podsiadlowski 2001

Argelander

nstitut

- Good for following all relevant timescales
 e.g. slow-fast-slow transitions
- Also exploring possibilities e.g. nucleosynthesis
 e.g. Ivanova, Podsiadlowski & Spruit 2001
- Is a 3D process even approximately 1D (or 2D?)

Robert Izzard

3D models

Argelander

stronomie

netitut

- Relatively few models in literature
- Taam, Ricker, Sandquist, etc. are pioneers
- Early models use Smoothed Particle Hydrodynamics
- More recently mesh codes (work in progress!)
- Good for fast phases
 - e.g. plunge
- Bad for slow phases
 e.g. final spiral

Robert Izzard

Sandquist et al 1998

Sandquist et al 1998

2

3D Grid code

Robert Izzard

Common Envelopes - IAUS283 Planetary Nebulae

(10¹³ cm)

0

Х

n

 $\Omega \stackrel{\text{Argelander}}{\square} \overset{\text{Argelander}}{\underset{\text{für}}{\overset{\text{für}}{\overset{\text{für}}{\overset{\text{fur}}{\overset{fur}}{\overset{fur}}{\overset{fur}{\overset{fur}}{\overset{fur}}{\overset{fur}}{\overset{fur}}{\overset{fur}}{\overset{fur}{\overset{fur}}}{\overset{fur}}{\overset{fur}}{\overset{fur}}{\overset{fur}}}{\overset{fur}}{\overset{fur}}{\overset{fur}}{\overset{fur}}{\overset{fur}}{\overset{fur}}{\overset{fur}}{\overset{fur}}{\overset{fur}}{\overset{fur}}{\overset{fur}}}{\overset{fur}}{\overset{fur}}{\overset{fur}}{\overset{fur}}{\overset{fur}}{\overset{fur}}{\overset{fur}}{\overset{fur}}{\overset{fur}}{\overset{fur}}}{\overset{fur}}{\overset{fur}}{\overset{fur}}{\overset{fur}}{\overset{fur}}{\overset{fur}}{\overset{fur}}{\overset{fur}}{\overset{fur}}{\overset{fur}}{\overset{fur}}}{\overset{fur}}{\overset{fur}}{\overset{fur}}{\overset{fur}}{\overset{fur}}}{\overset{fur}}{\overset{fur}}{\overset{fur}}{\overset{fur}}{\overset{fur}}{\overset{fur}}}{\overset{fur}}{\overset{fur}}{\overset{fur}}{\overset{fur}}{\overset{fur}}}{\overset{fur}}{\overset{fur}}}{\overset{fur}}{\overset{fur}}{\overset{fur}}}{\overset{fur}}{\overset{fur}}}{\overset{fur}}{\overset{fur}}{\overset{fur}}{\overset{fur}}}{\overset{fur}}{\overset{fur}}}{\overset{fur}}{\overset{fur}}}{\overset{fur}}{\overset{fur}}}{\overset{fur}}{\overset{fur}}}{\overset{fur}}{\overset{fur}}{\overset{fur}}}{\overset{fur}}{\overset{fur}}}{\overset{fur}}{\overset{fur}}}{\overset{fur}}{\overset{fur}}{\overset{fur}}}{\overset{fur}}{\overset{fur}}}{\overset{fur}}{\overset{fur}}{\overset{fur}}{\overset{fur}}}{\overset{fur}}{\overset{fur}}{\overset{fur}}}{\overset{fur}}{\overset{fur}}{\overset{fur}}{\overset{fur}}}{\overset{fur}}{\overset{fur}}{\overset{fur}}{\overset{fur}}{\overset{fur}}{\overset{fur}}}{\overset{fur}}{\overset{fur}}}{\overset{fur}}{\overset{fur}}}{\overset{$

Density

Perpendicular to orbital plane

Robert Izzard

de Marco et al 2003

de Marco et al 2003

 $M_1=1.25~{
m M}_\odot$ $M_{
m c1}=0.56~{
m M}_\odot$ $M_2=0.1~{
m M}_\odot$ ${
m Density}$

Perpendicular to orbital plane

Robert Izzard

3D Grid code

de Marco et al 2003

- Envelope loss:
 - 4% in "Benchmark" model

 $M_1 = 1.25 \,\mathrm{M_{\odot}} \,\, M_{\mathrm{c1}} = 0.56 \,\mathrm{M_{\odot}} \, M_2 = 0.1 \,\mathrm{M_{\odot}}$

leads to merger

• 84% in "TP10" model $M_1 = 1.04 \,\mathrm{M_\odot} \, M_{\mathrm{c1}} = 0.60 \,\mathrm{M_\odot} \, M_2 = 0.1 \,\mathrm{M_\odot}$

results in close-binary

Ø

Ricker & Taam 2008

Focus on companion accretion

39.27 $M_1 = 1.05\,{
m M}_{\odot}$ 20 $M_{
m c1}=0.36\,{
m M}_{\odot}$ $M_2=0.6\,{
m M}_{\odot}$ 1.5 (10¹² cm) $P = 44 \,\mathrm{days}$ Not uniform nn flow! 54 Argelander Institut 0.0 1.5 2.5 0.5 1.0 2.0 **x (10¹² cm)** Common Envelopes – IAUS283 Planetary Nebulae **Robert Izzard** stronomie

Ricker & Taam 2008

Ricker & Taam 2011

arXiv:1107.3889

Argelander

nstitut

 $t = 56 {
m ~days}$ $M_1 = 1.05 {
m ~M}_{\odot}$ $M_{
m c1} = 0.36 {
m ~M}_{\odot}$ $M_2 = 0.6 {
m ~M}_{\odot}$

Robert Izzard

Parameterised models of CEE

Common Envelopes - IAUS283 Planetary Nebulae

VS

 $\frac{GM_1M_{1\rm env}}{\lambda R_1}$ Envelope

 $\Omega \stackrel{\text{Argelander}}{=} \Omega$

Robert Izzard

initial

final

Robert Izzard

final

Robert Izzard

initial

final

Robert Izzard

Common Envelopes - IAUS283 Planetary Nebulae

Astronomie

Common Envelopes - IAUS283 Planetary Nebulae

Astronomie

Enevelope Fate

merger

ejection

 $\sum_{\mathbf{X}} \Omega \stackrel{\text{Argelander}}{\underset{fur}{\overset{\text{Institut}}{\underset{fur}{\overset{\text{Volume}}{\underset{\text{Astronomie}}}}}}$

Robert Izzard

The α prescription

$\Delta E_{\rm bind} = \alpha \, \Delta E_{\rm orb}$

$rac{a_f}{a_i} = f\left(M_1, M_{ ext{c1}}, M_2, lpha, \lambda ight)$

See e.g. Tutukov & Yungelson 1979 Yungelson et al 1983 Iben & Tutukov 1984 Webbink 1984, 2008 Also Zorotovic et al 2010, De Marco et al 2010/11

Beware alternative α prescriptions!

Argelander

nstitut

Robert Izzard

α & γ predictions

Constraining α

- Most population studies assume α =constant
- Three groups recently attempted to constrain α
 - Zorotovic et al 2010

WD/MS binaries, 35 from SDSS, 25 from literature

• De Marco et al 2010

31 systems, mixed types (de Marco 2009)

Davis et al 2011

35 WD/MS binaries, 14 sd+MS (Ritter & Kolb 2003)

Robert Izzard

Conflicting results?

Conflicting results?

Improving λ

Dewi & Tauris 2000; Tauris & Dewi 2001
 Uncertainty in where/how to calculate λ
 Fitting functions already in many binary codes

Robert Izzard

 $GM_1M_{1\mathrm{env}}$

Improving λ

- Dewi & Tauris 2000; Tauris & Dewi 2001
 Fitting functions already in many binary codes
- Recent updates:
- Xu & Li 2010 $1 \le M/M_{\odot} \le 20$ Z = 0.001, 0.02

 $GM_1M_{1\mathrm{env}}$

 λR_1

 $GM_1M_{1\mathrm{env}}$

 λR_1

Astronomie

Xu & Li 2010 Z=0.02

Improving λ

- Dewi & Tauris 2000; Tauris & Dewi 2001
 Fitting functions already in many binary codes
- Recent updates:
- Xu & Li 2010 $1 \le M/M_{\odot} \le 20$ Z = 0.001, 0.02
- Loveridge, van der Sluys & Kalogera 2010
 $0.8 \le M/{
 m M}_{\odot} \le 100$ $Z = 10^{-4} \le Z \le 0.03$
- See also *Ivanova* 2011 discussion of divergence and compression points

 GM_1M_{1env}

 λR_1

Other objects and CEE

- Cataclysmic variables (classical novae, SNIa)
- Close double white dwarfs (SNIa)
- Short-period barium/CH stars (P<100 days, e=0.1!)

SNIc

- Mergers (FK Com, R-type carbon stars?)
- Massive stars ("all" binaries!) :

Gamma-ray bursts

rapid rotators

NS-NS/BH etc etc etc

Argelander

nstitut

Conclusions or Where next?

Pushing the (common)

Envelope

Argelander

nstitut

Current research is focused on:

- Constraining α from post-CE observations
- 3D simulations
- Improved algorithms for λ
 We need:
- Better statistics (more systems!)
- Further constraints (such as?)
- Bigger brains, larger computers,

better simulations all the way to THE END.

Robert Izzard