Binary Star Populations:
Keys to Understanding Stellar Astrophysics

Robert Izzard

Université Libre de Bruxelles

with Onno Pols, Evert Glebbeek and Richard Stancliffe

A Short Journey...

- Your Night Sky: Why Binaries?
- My Biased View of (Binary) Stellar Evolution
- Chemically Peculiar Stars: CEMPs
- Did Asymptotic Giant stars make the CEMPs?
- Population study
- Pin down Key Physics
- Time for a demo?

Night Sky

Night Sky Binaries

Night Sky Binaries

Night Sky in Brussels!

Useful numbers

Stars brighter than 5th magnitude in Yale catalogue

- 1618 star systems
- 793 binary systems
- Binary Fraction $=\frac{793}{1618}=49 \%$
- 51 single stars : 98 stars in binaries
- Most stars are in binaries!

Why Binaries? (1)

- Accurate stellar masses, radii, luminosities

Why Binaries? (1)

- Accurate stellar masses, radii, luminosities
- Gamma-ray bursts: long and short, oldest known events! (redshift 8)

Why Binaries? (1)

- Accurate stellar masses, radii, luminosities
- Gamma-ray bursts:
long and short, oldest known events! (redshift 8)
- Type la supernovae: Standard candles (?)

Tell us Universe is expanding?

Why Binaries? (1)

- Accurate stellar masses, radii, luminosities
- Gamma-ray bursts: long and short, oldest known events! (redshift 8)
- Type la supernovae: Standard candles (?)

Tell us Universe is expanding?

- Galactic Evolution: SN Ia, novae

Why Binaries? (1)

- Accurate stellar masses, radii, luminosities
- Gamma-ray bursts:
long and short, oldest known events! (redshift 8)
- Type la supernovae: Standard candles (?)

Tell us Universe is expanding?

- Galactic Evolution: SN Ia, novae
- Stellar mergers

Why Binaries? (1)

- Accurate stellar masses, radii, luminosities
- Gamma-ray bursts:
long and short, oldest known events! (redshift 8)
- Type la supernovae: Standard candles (?)

Tell us Universe is expanding?

- Galactic Evolution: SN Ia, novae
- Stellar mergers
- X-ray binaries

Why Binaries? (1)

- Accurate stellar masses, radii, luminosities
- Gamma-ray bursts: long and short, oldest known events! (redshift 8)
- Type la supernovae: Standard candles (?)

Tell us Universe is expanding?

- Galactic Evolution: SN Ia, novae
- Stellar mergers
- X-ray binaries
- Chemically peculiar stars (my favourites!): probe early Galactic evolution
- Vital to understanding galaxies, stellar clusters, star formation, cosmology. . .

Why Binaries? (2)

International Astronomical Union Symposium:
"Binary Stars as Critical Tools and Tests in Contemporary Astrophysics"

To understand galaxies we need to understand stars, but since most are members of binary and multiple star systems, we need to study and understand binary stars.

I would add:
Sometimes binary stars are the only way to understand single stars . . .

Why are binaries so different?

1. Single star evolution
2. Binary star evolution

A biased view of the evolution of low/intermediate mass stars

Single Star Evolution

Time/Gyr \rightarrow

Single Star Evolution

0

Time/Gyr \rightarrow

Single Star Evolution

0

5

Time/Gyr \rightarrow

Single Star Evolution

Time/Gyr \rightarrow

Single Star Evolution

Time/Gyr \rightarrow

Binary Star Evolution

Time/Gyr \rightarrow

Binary Star Evolution

0

5

Time/Gyr \rightarrow

Binary Star Evolution

0

5

10

$$
\text { Time/Gyr } \rightarrow
$$

Binary Star Evolution

Time/Gyr \rightarrow

What happens next?

Two cases:

- Close binary: Roche-lobe overflow
- Distant binary: Wind accretion

Close binary: Roche-lobe Overflow

Roche Lobe overflow

Common Envelope (Fast)

No chemical peculiarities

White Dwarf +

Chemically Normal Star

Distant Binary: Wind Accretion

Wind Accretion: Giant Wind

Wind Accretion: Gravitational Focusing

Wind Accretion: Accretion

Wind Accretion 6: Primary Death

White Dwarf + Chemically Peculiar Star

Do we see chemically peculiar stars?

YES! A family of them:

- Ba stars
- CH stars
- Carbon enhanced metal-poor stars

Carbon-Enhanced Metal-Poor Stars

CEMPs

- Metal-poor Galactic halo: oldest stars
$[\mathrm{Fe} / \mathrm{H}] \lesssim-2$
- Binary fraction consistent with all binaries

$$
[A / B]=\log \left(A / A_{\odot}\right)-\log \left(B / B_{\odot}\right)
$$

Carbon-Enhanced Metal-Poor Stars

CEMPs

- Metal-poor Galactic halo: oldest stars
$[\mathrm{Fe} / \mathrm{H}] \lesssim-2$
- Binary fraction consistent with all binaries
- About 1000 CEMPs known
- Statistically significant number!
- about 20% of all metal-poor stars!

$$
[A / B]=\log \left(A / A_{\odot}\right)-\log \left(B / B_{\odot}\right)
$$

Carbon-Enhanced Metal-Poor Stars

CEMPs

- Metal-poor Galactic halo: oldest stars
$[\mathrm{Fe} / \mathrm{H}] \lesssim-2$
- Binary fraction consistent with all binaries
- About 1000 CEMPs known
- Statistically significant number!
- about 20% of all metal-poor stars!
- Not evolved enough to make their own carbon
- Must come from a companion star!
- Fashionable... but well-observed because of this

$$
[A / B]=\log \left(A / A_{\odot}\right)-\log \left(B / B_{\odot}\right)
$$

CEMP: Carbon-Enhanced Metal Poor

CEMP: Carbon-Enhanced Metal Poor

$\mathrm{EMP}=$ Extremely Metal Poor

CEMP: Carbon-Enhanced Metal Poor

EMP=Extremely Metal Poor

CEMP: Carbon-Enhanced Metal Poor

EMP=Extremely Metal Poor

CEMP: Carbon-Enhanced Metal Poor

- About 1000 CEMPs known
- Binary fraction consistent with all binaries
- Metal-poor Galactic halo: oldest stars
- 20\% of all metal-poor stars but. . .
- Where did the carbon come from?

Candidate Primary Star

Primary is Asymptotic Red Giant star?

- Make carbon
- and other elements in
- Ba
- CH
- CEMPs
- IDEAL!

Primary Evolution were it a single star

Hypothesis

CEMPs are made by Accretion of Carbon-rich Material
from
Wind of Asymptotic Giant stars

How to test the idea?

Binary Star Model

$$
\downarrow
$$

Population Synthesis

\downarrow
 Compare to Observations:

Quantitative Statistical Analysis
Can the model explain 20\% CEMP/EMP or other observed properties of CEMPs?

There are technical and physics issues...

Technical issue: Single Stars

100

0.1

- $10 \mathrm{~h} \times 100=1,000 \mathrm{~h} \sim 6$ weeks

1,000,000

0.1
0.1
$M_{1} \quad 80$
$10 \mathrm{~h} \times 100 \times 100 \times 100=10,000,000 \mathrm{~h} \sim 1,000$ YEARS

Use a Rapid Code

$0.1 \mathrm{~s} \times 100 \times 100 \times 100=28 h$

Rapid Stellar Evolution Code

Replace many coupled differential equations with

1. fitting formulae
2. tabulated data
based on detailed (single-star) models: R, L, $M_{\text {core }}$ etc.

Rapid Stellar Evolution Code

My Code: binary_c/nucsyn

- Rapid single-star model
- Binary-star evolution algorithm
- Coupled nucleosynthesis
- Accurate but 10,000,000× faster
http://www.astro.ulb.ac.be/~izzard/binary_c/
- Try it yourself: Google for binary_c frontend

```
Gile Edt yiew History thookmans Dopls Hep
```


binary_c/nucsyn

A fringend to the binary eftusesyn code

Mass of star 1	14	ML_men, $0.1-1509$
Mas of star 2	5	M_aun, $0.1-100 \mid$
Masimem Evohtuinn Time	13700	In Mori

What I do with my code

- Make many populations, each 10^{6} stars
- Vary uncertain physics parameters
- Default physics:
- $[\mathrm{Fe} / \mathrm{H}]=-2.3$ (solar scaled)
- Accretion efficiency $=1$
- Efficient thermohaline mixing
- Primary carbon as detailed models (Karakas 2007)
- Tag CEMP, EMP stars, count them
- Compare to observations to find true physics

My Main Physics Knobs

1. Accretion efficiency (onto secondary)
2. Mixing efficiency (in secondary)
3. Composition of accreted material (in primary)

Physics 1: Accretion onto secondary

Physics 1: How much Accretion? (onto secondary) idealised Bondi-Hoyle accretion: Default efficiency 1

Physics 1: How much Accretion? (onto secondary)

Simulated accretion (val del Borro 2009)

Physics 2: How much Mixing? (In secondary)

Physics 2: How much Mixing? (In secondary)

Thermohaline mixing: Default model with mixing

Courtesy of Matteo Cantiello and Evert Glebbeek

Physics 3: What Composition is Accreted?

Physics 3: What Composition is Accreted?

Run the simulations ...

Results

What choice of physics gets us

20\% CEMPs?

Izzard, Glebbeek, Stancliffe and Pols
(2009 A\&A in press)

CEMP/EMP ratio (observed $20 \pm 10 \%$)

CEMP/EMP ratio (observed $20 \pm 10 \%$)

CEMP/EMP ratio (observed $20 \pm 10 \%$)

CEMP/EMP ratio (observed $20 \pm 10 \%$)

CEMP/EMP ratio (observed $20 \pm 10 \%$)

CEMP/EMP ratio (observed $20 \pm 10 \%$)

CEMP/EMP ratio (observed $20 \pm 10 \%$)

CEMP/EMP ratio (observed $20 \pm 10 \%$)

Key Results

1. Need MORE CARBON from primary star

- Found in very low metallicity stellar models $[\mathrm{Fe} / \mathrm{H}] \sim-3$
- My results suggest source still active at $[\mathrm{Fe} / \mathrm{H}] \sim-2$

Need carbon in LOW MASS primary stars

Key Results

1. Need MORE CARBON from primary star

- Found in very low metallicity stellar models $[\mathrm{Fe} / \mathrm{H}] \sim-3$
- My results suggest source still active at $[\mathrm{Fe} / \mathrm{H}] \sim-2$

2. Need carbon in LOW MASS primary stars

- Canonical Models $\mathrm{M} \gtrsim 1.2 \mathrm{M}_{\odot}$ have carbon
- My results suggest carbon in $M \gtrsim 0.8 \mathrm{M}_{\odot}$
- IMPORTANT because as many stars in $0.8-1.2 \mathrm{M}_{\odot}$ as $1.2-8 \mathrm{M}_{\odot}$!
- NEW models agree! (Cristallo, Campbell)

Key Results

1. Need MORE CARBON from primary star

- Found in very low metallicity stellar models $[\mathrm{Fe} / \mathrm{H}] \sim-3$
- My results suggest source still active at $[\mathrm{Fe} / \mathrm{H}] \sim-2$

2. Need carbon in LOW MASS primary stars

- Canonical Models $M \gtrsim 1.2 \mathrm{M}_{\odot}$ have carbon
- My results suggest carbon in $M \gtrsim 0.8 \mathrm{M}_{\odot}$
- IMPORTANT because as many stars in $0.8-1.2 \mathrm{M}_{\odot}$ as $1.2-8 \mathrm{M}_{\odot}$!
- NEW models agree! (Cristallo, Campbell)

3. MIXING in secondary is not efficient

- Thermohaline mechanism inefficient?
- Or something prevents it? Gravitational settling?

Key Results

- Asymptotic Giant-accretion scenario works ... just about!
- Need some knobs at full for CEMP/EMP~15\%
- Other uncertain physics (wind accretion, common envelope efficiency etc) has little effect
- Compatible with lowest observed CEMP/EMP ratio (10\%) and high binary fraction
- Initial mass function different at low metallicity? But then we have a NEMP issue...
- Many other CEMP characteristics to explore

Conclusions

- By looking at binary CEMPs, we can learn about the evolution of stars:
- when the Galaxy had just formed
- at low metallicity
- In these stars:
- Donor makes carbon down to low mass: $0.8 \mathrm{M}_{\odot}$
- Gainer does not mix much
- Challenges for stellar astrophysics!

Future Plans

Massive stars with chemistry, spin and binary populations

With Norbert Langer, Selma de Mink, Sung Chul Yoon, Matteo Cantiello, ESO/VLT FLAMES collaboration.

The end

1. Which stars make CEMPs? M_{1}

1. Which stars make CEMPs? M_{2}

1. Which stars make CEMPs? separation

