The ULB Binary-Star Modelling Project

Lionel Siess

Tyl Dermine

The ULB Binary-Star Modelling Project

Why binaries?

Many (most?) stars are in binaries

Accurate stellar parameters (L, R, M, T_{eff})

Exotic evolution

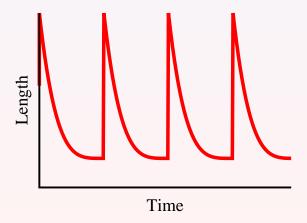
Pulsations! Ejections!

Accretion! Explosions!

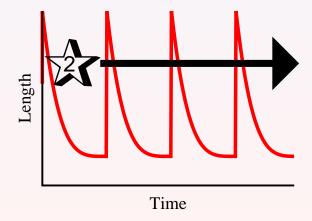
	Single Stars	Binary Stars
Observations:	M,MS,S (AGB)	Ba, CH, CEMP
Surveys:	GAIA	

	Single Stars	Binary Stars
Observations:	M,MS,S (AGB)	Ba, CH, CEMP
Surveys:	GAIA	GAIA
Modelling:		

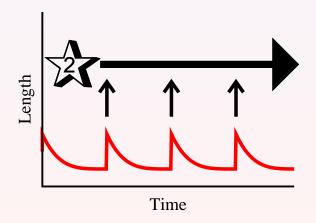
	Single Stars	Binary Stars
Observations:	M,MS,S (AGB)	Ba, CH, CEMP
Surveys:	GAIA	GAIA
Modelling:		


	Single Stars	Binary Stars
Observations:	M,MS,S (AGB)	Ba, CH, CEMP
Surveys:	GAIA	GAIA
Modelling:	Single Stars (STAREVOL) Nucleosynthesis	

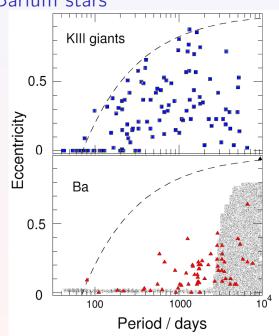
	Single Stars	Binary Stars
Observations:	M,MS,S (AGB)	Ba, CH, CEMP-s
Surveys:	GAIA	GAIA
Modelling:	Single Stars (STAREVOL) Nucleosynthesis	


Scientific challenges

- ► Focus on low- and intermediate-mass binary stars
- ► AGB mass transfer : Ba, CH, CEMP, post-AGB


Scientific challenges

- ► Focus on low- and intermediate-mass binary stars
- ► AGB mass transfer : Ba, CH, CEMP, post-AGB



Scientific challenges

- ► Focus on low- and intermediate-mass binary stars
- ► AGB mass transfer : Ba, CH, CEMP, post-AGB

e.g. Barium stars

STAREVOL (Lionel's code)

▶ Reliable, well-tested single-star evolution code

Derived from Kippenhahn's original code

- via Forestini etc.
- State-of-the-art input physics
- Detailed nucleosynthesis
- (S)AGB calculations, planetary accretion, rotational and gravity wave mixing etc.

Binary STAREVOL (Binstar? Binevol?)

- Complete rewrite!
 - FORTRAN 77→90, Modular
 - Numerical improvements
- Current status:
 - (most) Code reorganised
 - Evolves two stars at once
 - Basic mass transfer/orbital evolution
 - Working on the binary interaction physics (RLOF/wind/disc interaction)
 - Needs a better name!

Technological challenges

- ► Two stars→>twice as slow
- Parallel computing is the future
 - Quad-core CPU now
 - 8-thread CPU now
 - Open-MP parallelisation
- ► Graphics card: 100s of threads
 - ► Double precision now/soon
 - New scientific libraries
 - Charal

Final Remarks

- ▶ Binary-star code ready soon:
 - Tests new physics (e.g. wind/disc-interactions)
 - Self-consistent detailed AGB binary models!
 - Complements observational surveys
 - Harness new technology