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Population Nucleosynthesis

• Detailed single stellar evolution models
• Detailed binary stellar evolution models
• Single vs binary parameter space
• (Traditional) Population Synthesis
• Why use Population Synthesis?
• Population Nucleosynthesis
• AGB stars, Hot Bottoms, Binary Processes
• Chemical Yields, Nuclear Reaction Rates
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Detailed 1D Single Stellar Evolution

Solutions to equations:

• Hydrostatic equilibrium dP
dm

= −Gm
4πr4

• Mass conservation dr
dm

= 1
4πr2ρ

• Nuclear energy generation dL
dm

= ε

• (Radiative) Transport of the energy flux
dT
dm

= − 3
4ac

κ
T 3

F
(4πr2)2 (or convection prescription)

• Chemistry dXi

dt
= XiXj 〈σv〉ij
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Run time and extra time

• Code runs in ∼ minutes-hours

• Basic chemistry: 1H, 4He, 12C, 14N, 16O, 20Ne,
56Fe

• Post-processing nucleosynthesis required for
extra isotopes

• Code runs in ∼ days
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Single Star Uncertainties

• Initial mass M

• Initial abundances Z

• Mass-loss prescription
• Convective mixing prescription (MLT)
• Nuclear reaction rates 〈σv〉

• Code breakdown (numerical problems)
• Coupling to supernova II/Ib/c models
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Detailed 1D Binary Stellar Evolution

There are two types of code:

Coupled 1D models. e.g. Eggleton’s TWIN.

• Assumes stars are approximately spherical
• 1D stellar structure equations
• Perhaps small perturbations
• Simple mass transfer
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Detailed 3D Binary Stellar Evolution

Full 3D models, e.g. Djehuty

• 3D explicit (magneto-) hydrodynamic code
• Nuclear bomb simulation code!
• As close to “reality” as we can get
• Requires (US military) supercomputers
• Most of us are not allowed to use it!
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Binary Star Uncertainties

Guess. . .

• Initial mass M

• Initial abundances Z

• Mass-loss prescription
• Convective mixing prescription (MLT)
• Nuclear reaction rates 〈σv〉

• Code breakdown (numerical problems)
• Coupling to supernova II/Ib/c models
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Binary Star Processes

• Tidal Interaction
• Roche Lobe Overflow
• Common Envelope Evolution
• Wind collision
• Wind accretion
• Thermohaline Mixing
• Explosions: Type Ia SNe and novae
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Run time and extra time

• Code runs in at least twice the time of its
single star equivalent

• Basic chemistry: 1H, 4He, 12C, 14N, 16O, 20Ne,
56Fe

• Post-processing nucleosynthesis???
• Djehuty code evolves stars in approximately

real time!
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Single Star Parameter Space

At its simplest, this is two dimensional

• Mass M (distribution IMF)
• Metallicity Z (solar scaled or LMC/SMC)

Assume Z = Z� to reduce this to 1D.
All other physics is fixed.

Halifax 2004 – p.13/78



Binary Star Parameter Space

This is never simple!

• Mass M1 (IMF)
• Mass M2 (or ratio q = M2/M1, flat-q)
• Metallicity Z (abundances solar scaled?)
• Separation a (or period P related by Kepler’s

law, flat-ln)
• Eccentricity e

A five-dimensional space!
Assume e = 0, Z = Z� to reduce it to 3D.
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Chaos in Binaries

• Evolution is chaotic
• Perturb initial conditions slightly→
• Leads to very different evolution!
• High resolution grid required to resolve these

effects
• Particularly novae and SNe Ia which occur

rarely
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N14 from a 7 M� primary star
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Time is Money (unless you’re a student)

• At 1 hour per model (very conservative!)

• With 100 grid points per dimension. . .
• That is 106 grid points. . .
• Or 106 hours. . .
• Or 41667 days. . .
• Or 114 years. . .
• Or 38 PhDs. . .
• That assumes you got the physics right in the

first place. Which you didn’t!
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Population Synthesis

What if we can reduce the code run time by a
factor of 107? Evolution of a stellar population
would take a matter of hours. You could start a
model run, go to the pub, and it’ll be finished by
the time you wake up . . .

Halifax 2004 – p.18/78



Population Synthesis

• Fit results from detailed models to simple
functions

• Fit timescales τi, radius R, luminosity L, core
mass Mc etc. as f(M,Z, t)

• Couple to binary star model (tides, RLOF, CE,
wind accretion etc.)

• Model of single or binary star, from birth to
death, takes < 0.1s

• Millions of stars per day!
• Lose internal stellar structure information.
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Why Population Synthesis?

• It is the only way to explore the complete
parameter space

• Easily experiment with new physics e.g.
change mass-loss prescription, common
envelope removal efficiency etc.

• Compare to observations e.g. number ratios
of stellar types, supernova rates etc. to
determine the value of input parameters

• Feed these results back to detailed modellers
• Tells them what they should be getting!
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Flow diagram of (my?) life
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Limitations

• Fit accuracy ∼ 5%: good enough for most
applications

• Limited variables for comparison with
observations (L, R, M , stellar type, event –
e.g. SN or nova – rates; also Ṁ )

• But this is enough to ID many types of
binaries e.g. X-ray binaries, symbiotic stars,
double degenerate pairs, Algols etc. and
constrain (some) free parameters in the
physics
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Population Nucleosynthesis

• Introduce nucleosynthesis into synthetic
model

• Comparison variable set extends to L, R, M ,
Ṁ , stellar type, event rate and surface
abundances of more than 130 isotopes.

• Provides extra constraints on the models’ free
parameters.

• Fast/accurate nucleosynthesis model
(observations σ ∼ 0.1 dex)

• Synthetic AGB (Iben, Renzini, Groenewegen, Forestini
etc) Halifax 2004 – p.23/78



Nucleosynthesis in Stars
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TPAGB star
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Nucleosynthesis in TPAGB Stars

• Helium burning converts 4He into 12C, 16O and
20Ne during each pulse (more on this later!)

• The convective hydrogen envelope mixes into
the helium-burnt region

• Carbon, oxygen and neon are brought to the
surface during each pulse

• This is the “Third Dredge Up”
• NB Difficult to model! Need high resolution,

tough numerics.
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Thermal Pulses
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Third Dredge Up

• Occurs when core mass Mc exceeds a
threshold Mc,min

• Amount of material mixed: λ = ∆MDredge/∆MH

• Include in models by fitting the parameters λ
and Mc,min

• Fit intershell abundances to detailed models:
assume f(M,Z)

Halifax 2004 – p.28/78



Carbon Stars

• Surface carbon increases: star becomes a
“Carbon Star”

• Easily visible (bright, ID by photometry) and
complete SMC/LMC surveys exist

V713 Monocerotis Halifax 2004 – p.29/78



Carbon DUP
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Calibrating λ and Mc,min

• λ and Mc,min are fitted to Amanda’s detailed
models: Are they correct?

• Construct the luminosity function of carbon
stars by modelling a population

• Define λmin such that λ = max (λmin, λfit)

• Define ∆Mc,min so Mc,min = M fit
c,min + ∆Mc,min

• Plot dN/dmag for different λmin and ∆Mc,min

• Use χ2 test: best fit to LMC (Z = 0.008) and
SMC (Z = 0.004).
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Best Fit for the SMC
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Best Fit for the SMC

• λmin = 0.65 and ∆Mc,min = −0.07 M�.
• So third dredge-up occurs earlier and is more

efficient than the detailed models predict.
• New (detailed) models by Richard Stancliffe

can fit the LMC models nicely.
• But they still fail for the SMC.
• The models are still wrong!
• This is why synthetic models are good.
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Hot Bottoms?
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Hot Bottoms

• In stars with M & 4 M� the base of the
convective envelope is hot enough that Hot
Bottom Burning occurs

• Hydrogen burning occurs in the convective
region!

• CNO, NeNa and MgAl cycles may operate,
depending on the temperature

• Higher mass→ higher temperature
• CNO cycling prevents a star from evolving to

a carbon star
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Not a Carbon Star
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Quick Analytic Burning
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Quick Analytic Burning
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Quick Analytic Burning

• burn→ mix→ burn→ mix. . . replaced by
• A single burn→ mix step
• Calibrate amount of burning and burn time to

Amanda’s detailed models
• Require quick, but accurate, solution to

nuclear burning because differential equation
solving takes too long

• Iterative method is slow, consider analytic
solution
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The CNO cycle
12C +1H→13 N + γ
13N→13 C + e+ + ν
13C +1H→14 N + γ
14N +1H→15 O + γ
15N +1H→12 C + α
15N +1H→16 O + γ
15O→15 N + e+ + ν
16O +1H→17 F + γ
17F→17 O + e+ + ν

17O +1H→14 N +4He
17O +1H→18 F + γ
18F→18 O + e+ + ν

18O +1H→15 N +4He
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The CN cycle

• 15N +1H→16 O + γ is slow at low temperature
(or short burn times)

• CNO splits to CN and ON cycles
• Express CN cycle as eigenvalue problem

d

dt







12C
13C
14N






=







−1/τ12 0 1/τ14

1/τ12 −1/τ13 0

0 1/τ13 −1/τ14













12C
13C
14N







• Solve for 12,13C, 14N as (simple) f(t).
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The ON Cycle

• Long burn times: CN cycle→ eq. ∼ 98% 14N

• ON cycle activates

d

dt







14N
16O
17O






=







−1/τ12 0 1/τ14

1/τ12 −1/τ13 0

0 1/τ13 −1/τ14













14N
16O
17O







• Oxygen (slowly!) destroyed.
• Again 14N is the result.
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CNO Equilibrium
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Synthetic vs Detailed
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NeNa cycle

21Ne
(p,γ)
−−→ 22Na

(β+) ↑ ↓ (β+)
21Na 22Ne

(p, γ) ↑ ↓ (p, γ)

19F
(p,γ)
−−→ 20Ne

(p,α)
←−− 23Na

(p,γ)
−−→ MgAl
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Simpler NeNa cycle

21Ne
(p,γ)
−−−→ 22Ne

(p, γ) ↑ ↓ (p, γ)

20Ne
(p,α)
←−−− 23Na
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Another eigenvalue problem

d
dt











20Ne
21Ne
22Ne
23Na











=











− 1
τ20

0 0 1
τ23

1
τ20

1
−τ21

0 0

0 1
τ21

− 1
τ22

0

0 0 1
τ22

− 1
τ23





















20Ne
21Ne
22Ne
23Na











→analytic solution. . .
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Example: 21Ne
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MgAl cycle. . .

25Mg
(p,γ)
−−→ 26Al

(p,γ)
−−→ 27Si

(β+) ↑
25Al

(p, γ) ↑

↓ (β+)
26Mg
↓ (p, γ)

�
�

�
�	

(β+)

23Na
(p,γ)
−−→ 24Mg

(p,α)
←−− 27Al

(p,γ)
−−→ 28Si

Halifax 2004 – p.50/78



Becomes the MgAl Chain

•
d24Mg

dt = −
24Mg
τ24

,

•
d25Mg

dt = −
25Mg
τ25

+
24Mg
τ24

,

• d26Al
dt =

25Mg
τ25
−

26Al
τβ26
−

26Al
τ26′

=
25Mg
τ25
−

26Al
τ ′26

,

•
d26Mg

dt =
26Al
τβ26
−

26Mg
τ26

• d27Al
dt =

26Mg
τ26

+
26Al
τ26′

> 0
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Example: 24Mg
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Chemical Yields

• Galactic Chemical Evolution models require
calculations of yields

• This is the amount of mass ejected as each
isotope from a population of stars

• Synthetic models can be used to calculate
the yields from single and binary stars

• Uncertainties due to variable initial
distributions / physics
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Chemical Yields

One definition (my definition)

yield of i =
MASS OUT AS ISOTOPE i

MASS INTO STARS

• Mass into stars is different for single and
binary populations, this definition takes that
into account.

• Binary interaction reduces number of GB and
AGB stars, so reduces the yield of isotopes
produced in GB and AGB stars.

Halifax 2004 – p.54/78



Nitrogen Yield (Integrated)

Integrated nitrogen yield (mass out as 14N / mass
input to stars)

• Single Stars 1.294× 10−3

• Binary Stars 9.878× 10−4

• Difference due to binaries :−24%
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Reaction Rates in the Intershell

• Intershell composition→ envelope pollution

• Reaction rates determine amount of isotopic
production

• Many are quite uncertain (e.g. 25Mg (α, n)28Si fac. 105!)

• Can we quantify the uncertainty in the yields?

• Difficult problem: many rates/stars, takes too long

• Perhaps with a synthetic model?

• Synthetic Helium Burning!

• Convective intershell: much like HBB.
Halifax 2004 – p.56/78
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Helium Flash: ρ
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Helium Flash: convection
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Helium Burning Reactions

Material is processed by complete hydrogen
burning, so is 0% 1H, ∼ 98%4He, CNO→ 14N,
other trace metals (perhaps NeNa/MgAl cycled).
Two reaction sets operate
• α-capture e.g. 4He(αα, γ)12C, 12C(α, γ)16O,

16O(α, γ)20Ne etc.
• n-capture e.g. 20Ne(n, γ)21Ne, 24Mg(n, γ)25Mg,

28Si(n, γ)29Si

Detailed models give final abundances 4He = 0.7,
12C = 0.26, 16O = 0.004.
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Helium Flash: 4He
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Helium Flash: 12C
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α captures

d4He

dt
= −3 〈σv〉

3α
(4He)3−〈σv〉

α12

4He12C−〈σv〉
α16

4He16O−...,

d12C

dt
= 〈σv〉3α (4He)3 − 〈σv〉α12

4He12C ,

d16O

dt
= 〈σv〉α12

4He12C− 〈σv〉α16
4He16O

d20Ne

dt
= 〈σv〉α16

4He16O− 〈σv〉α20
4He20Ne

. . .
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First approximation. . .

d4He

dt
= −3 〈σv〉

3α
(4He)3−〈σv〉

α12

4He12C− 〈σv〉
α16

4He16O,

d12C

dt
= 〈σv〉3α (4He)3−〈σv〉α12

4He12C ,

d16O

dt
= 〈σv〉α12

4He12C−〈σv〉α16
4He16O

d20Ne

dt
= 〈σv〉α16

4He16O−〈σv〉α20
4He20Ne
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But it’s not really like HBB!

• Some of the material ingested into the
convective pocket is not from hydrogen
burning

• In fact it is radiatively He-burnt material!

• Abundances 4He ∼ 0.55, 12C ∼ 0.4,
16O ∼ 0.015 are a function of mass

• Contribution due to this “dredge up” is small
but contributes to the 12C, 16O, 20Ne

• Not easy to model with a simple algorithm :(
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16O(α, γ)20Ne Burn Rate
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Prototype Model

• Assume constant abundance radiative
dredge-up material

• Fit T and ρ (max) of convective pulse vs t

• Burn a fraction of the intershell at T , ρ for the
pulse duration (∼ 25 years)

• Fit a constant mixing rate (burnt + unburnt) to
Amanda’s model results

Halifax 2004 – p.67/78



Iterative Burning

• Traditional technique, required because of
4He3 term and significant 12C-burning

• At each timestep use iterative relaxation
method to calculate abundances

• n-capture equilibrium
• Code in Perl, easy to experiment or change

(or break!)
• slower than C or the evil F so must be efficient
• Iterative solution agrees with Runge-Kutta

solution
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M = 5 M�, Z = 0.02, TP19, mix rate 1.15× 10−7

Isotope Amanda Rob
4He 0.7007 0.7064
12C 0.2666 0.2656
16O 0.004212 0.002608
20Ne 0.001585 0.001566
21Ne 2.869× 10−5 2.328× 10−5

22Ne 0.01794 0.01921
24Mg 0.0001174 0.00009838
25Mg 0.002673 0.001504
26Mg 0.003016 0.001613
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Why simple HBB model worked

• T and ρ are ∼constant over an interpulse
period

• Burning shell is thin compared to Mconv

• Total amount burned < Mconv

• Hydrogen abundance ∼ constant over an
interpulse
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Why simple He-burning model fails

• T and ρ are definitely not constant in mass or
time

• Burning shell is not thin compared to Mconv?
• Total amount burned�Mconv

• Helium abundance is not constant
• Mixing rate is not constant?
• Not because neutrons are out of eq.
• Burning by iterative network is much slower

(but quicker than RK!)
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Conclusions

• Need to model radiative burning properly:
need mass grid

• Convective burning tricky without T , ρ, Y and
mixing as f(t)

• We may as well use detailed models. . .
• It’s just too complicated for synthetic models.
• Easier to fit results of detailed model runs.
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Thermal Pulse 19 ρ
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Thermal Pulse 19 Convection
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Thermal Pulse 19 4He
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Thermal Pulse 19 29Si
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The end
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