Solving the Century-Old R-Star Mystery

Rob Izzard (Utrecht University)
Simon Jeffery (Armagh Observatory) John Lattanzio (Monash University)

Contents

Case History
What Are The R Stars Not?
What Are The R Stars?
R Star Recipe
Example System
Population Synthesis
Unanswered Questions
Hot Off The Press

Father Secchi, 1868

A Catalogue of Spectra of Red Stars: "You will see that there is a new type of stars. . . this classification is very curious indeed. I am, however, surprised to see some zones always at the same places; so that there is a great cosmical law about to come forth ... You see, however, that the red stars make quite a family by themselves, which is very distinct."

His Discovery...

The Carbon Stars

- Asymptotic Giant Branch Stars ($\mathrm{H}+\mathrm{He}$ burning)
- $1-3 \mathrm{M}_{\odot}$, all $\mathrm{Z}, \mathrm{L} \gtrsim 10^{3} \mathrm{~L}_{\odot}, \mathrm{R} \gtrsim 100 \mathrm{R}_{\odot}$, $\mathrm{T}_{\text {eff }} \sim 3 \times 10^{3} \mathrm{~K}$
- Third Dredge Up brings carbon to the surface
- Spectral "zones": $\mathrm{C}_{2}, \mathrm{CN}, \mathrm{CH}$ etc. absorption bands
- Spectral Type $N=$ Spectral Type M with carbon

How To Make Carbon

- Carbon in stars must come from somewhere...
- Triple alpha reaction, $3 \alpha \rightarrow{ }^{4} \mathrm{He}$, in AGB and WR stars (SNe)

Fleming \& Pickering, 1896/1908

Fleming \& Pickering, 1896/1908

- Observations 1896 - Reclassification in 1908.
- In Fleming's classification, stars of the fourth type are red carbon stars (N stars)
- "Of the seven stars whose spectra are here announced as of Type IV ... <four> contain rays of much shorter wave length than ordinary fourth type stars"
- G

- "They are described as showing one or more dark bands" which "agree almost equally well with the dark band in spectra of the fourth type"

Fleming \& Pickering, 1896/1908

- "These spectra cannot well be classed as fourth types since they contain so much blue light"
- "Why not assign a Class to them, if they are outside the Classes already known?"
- Definition of "Class R, to designate stars having this Class of spectrum".
- Fleming finds 51 stars which fall in this new Class R.

Class R stars are not rare!

Rufus 1916

- Class R precedes class N ?
-

Rufus 1916

- Class R precedes class N
-

Rufus 1916

- Class R precedes class N
- First discussion of carbon as the agent of the bands
- Identifies R stars with K stars on the basis of colours, galactic distribution, radial velocities, variability, similarity of absorption lines, similar (cyanogen, hydrogen, 4227 etc) lines.
- ... and M with N stars

C- 1918
 $\begin{array}{llllllllllllllll}1860 & 1870 & 1880 & 1890 & 1900 & 1910 & 1920 & 1930 & 1940 & 1950 & 1960 & 1970 & 1980 & 1990 & 2000 & 2010\end{array}$

Henry Draper Catalogue, 1918

Cannon and Pickering, 1918

Henry Draper Catalogue, 1918

Cannon and Pickering, 1918

- Split Class R into R0 to R8, from bluest to reddest:
- R0: ~G5/K0, dark C-band at 4700. Some K-R0 intermediate spectra, H and K calcium bands visible.
- R3: As R0 with fainter H and K calcium lines.
- R5: Shorter than 4240 the continuous spectrum is barely visible.
- R8: Very faint shorter than 4240, hard to distinguish from Class N
Also updates due to Shane 1928, Wildt 1936:
Cyanogen lines in R stars, not in N stars

Spectra (Barnbaum et al. 1996)

Keenan and Morgan, 1941

Keenan and Morgan, 1941

- Reclassification of R-N
- Spectral classes R and N do not appear to represent a consistent progression in temperature.
- New classes based on: atomic line ratios sensitive to temperature, sodium D lines, C_{2} molecule etc.
- Class depends on stellar carbon abundance

First identification of high velocity CH stars:
Low metallicity dwarfs/giants which accreted carbon from an N-type $A G B$ star

Statistical Surveys

Wilson 1939, Sanford 1944, Vandervort 1958, Baumert 1974

- Magnitudes of (early) R stars:
$1-2$ mag dimmer than N stars
- Early R stars are Red Clump stars? (magnitude about 0.5)

Sanford 1944, Vandervort 1958

- Radial velocities:

R stars faster (older) than N stars?

Statistical Surveys 2

Sanford 1944, Blanco 1965, Barbaro and Dallaporta 1974

- R-stars distributed over the sky,

N stars show galactic concentration


```
\(\begin{array}{llllllllllllllll}1860 & 1870 & 1880 & 1890 & 1900 & 1910 & 1920 & 1930 & 1940 & 1950 & 1960 & 1970 & 1980 & 1990 & 2000 & 2010\end{array}\)
```


Eggen 1972

- Keenan and Morgan changes: A Retrogressive Step
- Some HD R5-R8 objects reclassified as type N!
- Only hot R0-R3 objects are true R stars
- Late R stars are just misclassified N stars?


```
\(\begin{array}{llllllllllllllll}1860 & 1870 & 1880 & 1890 & 1900 & 1910 & 1920 & 1930 & 1940 & 1950 & 1960 & 1970 & 1980 & 1990 & 2000 & 2010\end{array}\)
```


Scalo's HRD

Early R stars
$\mathrm{L} \sim 100 \mathrm{~L}_{\odot}$
$\sim \mathrm{L}_{\text {clump }}$

Late N stars
$\mathrm{L} \sim 1000 \mathrm{~L}_{\odot}$
~ L

 $\begin{array}{llllllllllllllll}1860 & 1870 & 1880 & 1890 & 1900 & 1910 & 1920 & 1930 & 1940 & 1950 & 1960 & 1970 & 1980 & 1990 & 2000 & 2010\end{array}$

Dominy 1984

Modern hi-res spectra of Early R stars $(\Delta \lambda / \lambda=30,000)$

- Carbon/Oxygen >1 Helium burning

Dominy 1984

Modern hi-res spectra of Early R stars $(\Delta \lambda / \lambda=30,000)$

- Carbon/Oxygen >1 Helium burning
- ${ }^{12} \mathrm{C} /{ }^{13} \mathrm{C}<10:{ }^{13} \mathrm{C}$ enhanced Hydrogen burning
- Nitrogen enhancement Hydrogen burning
\square

Dominy 1984

Modern hi-res spectra of Early R stars $(\Delta \lambda / \lambda=30,000)$

- Carbon/Oxygen >1 Helium burning
- ${ }^{12} \mathrm{C} /{ }^{13} \mathrm{C}<10:{ }^{13} \mathrm{C}$ enhanced Hydrogen burning
- Nitrogen enhancement Hydrogen burning
- Oxygen and iron normal (~solar) Not too hot/much hydrogen burning, old disk population
- No odd Mg isotopes Not too much hydrogen burning

Dominy 1984

Modern hi-res spectra of Early R stars $(\Delta \lambda / \lambda=30,000)$

- Carbon/Oxygen >1 Helium burning
- ${ }^{12} \mathrm{C} /{ }^{13} \mathrm{C}<10:{ }^{13} \mathrm{C}$ enhanced Hydrogen burning
- Nitrogen enhancement Hydrogen burning
- Oxygen and iron normal (~solar) Not too hot/much hydrogen burning, old disk population
- No lithium enhancement No AGB
- No odd Mg isotopes Not too much hydrogen burning
- No s-process No AGB

McClure 1997

- A key to the mystery! Observed 22 early R stars over 16 years...

McClure 1997

- A key to the mystery! Observed 22 early R stars over 16 years...
- Early R Stars are

ALL SINGLE STARS

- Compare to:
- 20\% binaries in late type giants
- 100\% in Barium and CH stars (giants or dwarfs)

Knapp et al. 2001

- 317 Hipparcos cool carbon stars
- R0-3 $M_{K}=-2.0 \pm 1.0$ compared to -1.6 for red clump
- Late-R $=$ N, Early-R: $0.04-0.14 \%$ of red clump

For a small fraction of the helium core burning stars, carbon produced in the interior is mixed (in)to the atmosphere in sufficient quantities to form a carbon star.

Evidence File Closed

But the question remains...

What are the R stars?

What Type of Star Can It (Not) Be?

"Whenever you have eliminated the impossible, whatever remains, however improbable, must be true."

Sherlock?

What Type of Star Can It (Not) Be?

"Whenever you have eliminated the impossible, whatever remains, however improbable, must be true."

What Type of Star Can It (Not) Be?

Phase	Burning	Core	$\mathrm{L} / \mathrm{L}_{\odot}$
Main Sequence	H	H	$\gtrsim 1 \mathrm{~L}_{\odot}$
Hertzsprung Gap or First GB	H	He	$100-200$
$\mathrm{CHeB} /$ Red Clump	He	$\mathrm{He} \rightarrow \mathrm{CO}$	100
AGB	H / He	CO	$200-1000 \mathrm{~L}_{\odot}$
Massive Star	$\mathrm{H} \ldots$	$\mathrm{He} \ldots$	$\gtrsim 100 \mathrm{~L}_{\odot}$
Helium Star	He	CO	$\gtrsim 100 \mathrm{~L}_{\odot}$
White Dwarf	-	$\mathrm{He} / \mathrm{CO} / \mathrm{ONe}$	$\mathrm{L}(\mathrm{t})$

What Type of Star Can It Be?

Phase	Burning	Core	$\mathrm{L} / \mathrm{L}_{\odot}$
Main Sequence	H	H	$\gtrsim 1 \mathrm{~L}_{\odot}$
Hertzsprung Gap or First GB	H	He	$100-200$
$\mathrm{CHeB} /$ Red Clump	He	$\mathrm{He} \rightarrow \mathrm{CO}$	100
AGB	H / He	CO	$200-1000 \mathrm{~L}_{\odot}$
Massive Star	$\mathrm{H} \ldots$	$\mathrm{He} \ldots$	$\gtrsim 100 \mathrm{~L}_{\odot}$
Helium Star	He	CO	$\gtrsim 100 \mathrm{~L}_{\odot}$
White Dwarf	-	$\mathrm{He} / \mathrm{CO} / \mathrm{ONe}$	$\mathrm{L}(\mathrm{t})$

By elimination: CHeB star!

So What Are The R Stars?

- Core Helium Burning (red clump) giants
- Single stars
- Old disk stars
- Carbon, nitrogen rich
- Oxygen, iron, Mg, s-process: ~solar
- $\mathrm{L} \sim 100 \mathrm{~L}_{\odot}, 10 \times$ dimmer than AGB
- $\mathrm{N}_{\mathrm{R}} / \mathrm{N}_{\text {clump }} \sim 0.1 \%$ rare compared to clump
- $\mathrm{N}_{\mathrm{R}} / \mathrm{N}_{\mathrm{N}} \gtrsim 10$ common compared to AGB

Helium Ignition

- Low mass stars: degenerate He flash
- Normal evolution: no extra carbon

Is the helium flash different in R stars?

Promising 1D Models

- Mengel and Gross 1976: $0.85 \mathrm{M}_{\odot}$ rotating

- Compared to zero rotation:
- Fast-spinning cores develop on the giant branch
- Helium ignites at a higher core mass
- But: No pollution of the envelope

More 1D Models

- Paczynski and Tremaine 1977: 0.8 M \odot_{\odot} Pop II star
- Variable helium ignition location
- Possible for carbon to penetrate into envelope! (ignition at $0.4 \mathrm{M}_{\odot}$)
- Final carbon abundance $X_{12}=0.013$
- "We suggest that this process might explain the carbon overabundance in CH and R stars"

Flash at $0.4 \mathrm{M}_{\odot}$

Speculative 2D Models

Deupree etc. 1980s/90s: Some C mixed.

R Star Recipe 1

1. Ignite a rapidly rotating helium core

R Star Recipe 1

1. Ignite a rapidly rotating helium core
2. Mix some carbon from 3α to the surface

R Star Recipe 1

1. Ignite a rapidly rotating helium core
2. Mix some carbon from 3α to the surface
3. Hydrogen shell burning $\mathrm{C} \rightarrow \mathrm{N}$

R Star Recipe 1

1. Ignite a rapidly rotating helium core
2. Mix some carbon from 3α to the surface
3. Hydrogen shell burning $\mathrm{C} \rightarrow \mathrm{N}$
4. Voila! Your R Star
5. But why are they all single stars?

R Star Recipe 1

1. Ignite a rapidly rotating helium core
2. Mix some carbon from 3α to the surface
3. Hydrogen shell burning $\mathrm{C} \rightarrow \mathrm{N}$
4. Voila! Your R Star
5. But why are they all single stars?

R Star Recipe 1

1. Ignite a rapidly rotating helium core
2. Mix some carbon from 3α to the surface
3. Hydrogen shell burning $\mathrm{C} \rightarrow \mathrm{N}$
4. Voila! Your R Star
5. But why are they all single stars?
6. MERGERS

Evolutionary Scenario

1. Merge two stars \rightarrow rapidly rotating core
2. Ignite helium in core, mix to surface
3. Single R Star!

Constraints:

- Stars must be before or during He-burning phase
- Initial binary: low mass, close
- Merger: $\mathrm{He}+\mathrm{He} \rightarrow$ ignition \sim sdB stars

1.3 MS + 0.5 MS, P~6 days,

$\mathrm{q} \sim 0.4$
$\mathrm{HG}+\mathrm{MS}, \mathrm{P} \sim 6$ days, $q \sim 0.4$

HG + MS RLOF starts,
$\mathrm{P} \sim 3.5$ days, q increases

GB + MS RLOF continues,
$\mathrm{P} \sim 12$ days, $\mathrm{q}>1$

HeWD + MS, P~21 days, $q \sim 7$

HeWD + HG, P~21 days, q~7

HeWD + GB RLOF starts

Common envelope:
HeWD+He core spiral in

He cores merge, He ignition, C mixing

Star settles to CHeB structure:

R Star

An R-Star Population Model

R stars are HeWD-GB mergers?

- Use our Binary Population Nucleosynthesis code* to analyse numbers and abundances
Follows stellar evolution and nucleosynthesis in
* Izzard et al. 2006 A\&A 460565

An R-Star Population Model

R stars are HeWD-GB mergers?

- Use our Binary Population Nucleosynthesis code* to analyse numbers and abundances
- Follows stellar evolution and nucleosynthesis in single and binary stars
* Izzard et al. 2006 A\&A 460565

An R-Star Population Model

R stars are HeWD-GB mergers?

- Use our Binary Population Nucleosynthesis code* to analyse numbers and abundances
- Follows stellar evolution and nucleosynthesis in single and binary stars
- Runs about 10^{7} times faster than typical stellar evolution code Great for exploring parameter space! Tag HeWD-GB mergers, follow them during subsequent CHeB phase

An R-Star Population Model

R stars are HeWD-GB mergers?

- Use our Binary Population Nucleosynthesis code* to analyse numbers and abundances
- Follows stellar evolution and nucleosynthesis in single and binary stars
- Runs about 10^{7} times faster than typical stellar evolution code
- Great for exploring parameter space!
subsequent CHeB phase Other channels: extrinsic (CH -star in CHeB phase) * Izzard et al. 2006 A\&A 460565

An R-Star Population Model

R stars are HeWD-GB mergers?

- Use our Binary Population Nucleosynthesis code* to analyse numbers and abundances
- Follows stellar evolution and nucleosynthesis in single and binary stars
- Runs about 10^{7} times faster than typical stellar evolution code
- Great for exploring parameter space!
- Tag HeWD-GB mergers, follow them during subsequent CHeB phase
* Izzard et al. 2006 A\&A 460565

An R-Star Population Model

R stars are HeWD-GB mergers?

- Use our Binary Population Nucleosynthesis code* to analyse numbers and abundances
- Follows stellar evolution and nucleosynthesis in single and binary stars
- Runs about 10^{7} times faster than typical stellar evolution code
- Great for exploring parameter space!
- Tag HeWD-GB mergers, follow them during subsequent CHeB phase
- Other channels: extrinsic (CH-star in CHeB phase), WR(C)?, HeWD-CHeB
* Izzard et al. 2006 A\&A 460565

An R-Star Population Model

R stars are HeWD-GB mergers?

- Use our Binary Population Nucleosynthesis code* to analyse numbers and abundances
- Follows stellar evolution and nucleosynthesis in single and binary stars
- Runs about 10^{7} times faster than typical stellar evolution code
- Great for exploring parameter space!
- Tag HeWD-GB mergers, follow them during subsequent CHeB phase
- Other channels: extrinsic (CH-star in CHeB phase), WR(C)?, HeWD-CHeB
- Follow evolutionary phases, number counts, ratios
* Izzard et al. 2006 A\&A 460565

Results

- R to Clump ratio
- Initial Distributions
- Common envelope entry conditions
- Zero-age R stars

Nucleosynthesis

Results: $\mathrm{R}: \mathrm{CHeB}$ ratio

R3 -— R4 - - R5 $\square-\quad$ R6 \triangle R7 $\square-$

Results: Initial Distributions M_{2} vs M_{1}

Results: Initial Distributions P vs M_{1}

Results: Pre-CE $M_{1,2}$ (Ch. R3)

Results: Pre-CE Core $\mathrm{M}_{\mathrm{c} 1,2}$ (R3)

Results: Post-Merger Stars

Results: How Much Carbon for $\mathrm{C} / \mathrm{O}>1$?

R Star Checklist

L	OK	${ }^{16} \mathrm{O}$	OK
$\mathrm{T}_{\text {eff }}$	OK	$\mathrm{Z} \sim \mathrm{Z}_{\odot}$	OK
${ }^{12} \mathrm{C}$	OK	Single stars	OK
${ }^{12} \mathrm{C} /{ }^{13} \mathrm{C}$	OK	$\mathrm{N}_{\mathrm{R}} / \mathrm{N}_{\text {Clump }}$ ratio	OK
${ }^{14} \mathrm{~N}$	OK	Flash Mixing Mechanism	$? ? ?$

Early R stars are mergers
Late R stars are really N stars

Unanswered Questions

- Does the star/core retain its angular momentum? No!

Can we model this in 1D? Or is it a 3D-hydro problem?

Unanswered Questions

- Does the star/core retain its angular momentum? No!
- Can we model this in 1D?
... Or is it a 3D-hydro problem?

Unanswered Questions

- Does the star/core retain its angular momentum? No!
- Can we model this in 1D?
... Or is it a 3D-hydro problem?
- How is carbon mixed to the surface?

What about nitrogen? Other isotopes? Are there other channels we have failed to consider? Triples? Worse?! Planets?

Unanswered Questions

- Does the star/core retain its angular momentum? No!
- Can we model this in 1D?
... Or is it a 3D-hydro problem?
- How is carbon mixed to the surface?
- What about nitrogen? Other isotopes?

observed?

Unanswered Questions

- Does the star/core retain its angular momentum?

No!

- Can we model this in 1D?
... Or is it a 3D-hydro problem?
- How is carbon mixed to the surface?
- What about nitrogen? Other isotopes?
- Are there other channels we have failed to consider?

Triples? Worse?! Planets?
Post-1st-RLOF system is HeWD + Blue Straggler: observed?

Unanswered Questions

- Does the star/core retain its angular momentum?

No!

- Can we model this in 1D?
... Or is it a 3D-hydro problem?
- How is carbon mixed to the surface?
- What about nitrogen? Other isotopes?
- Are there other channels we have failed to consider?

Triples? Worse?! Planets?

- Post-1st-RLOF system is HeWD + Blue Straggler: observed?

Latest models: Angelou \& Lattanzio 2008

Latest Observations: Zamora et al 2009

23 R stars, hot and cool

- late-R = N
- Same results as Dominy 1984
- Large Li abundances in early-R?
- Dismissive of merger channel based on unpublished SPH models. . . ?!

Conclusions

- Our merger model is compatible with all current reliable observations (need more!)
- It naturally predicts the correct number and properties of single, $\mathrm{Z} \sim \mathrm{Z}_{\odot} \mathrm{R}$ stars
- HeWD-He-core merger in common envelope is poorly understood but our results may be telling us what happens
- R stars are a key to understanding stellar mergers!
- Theoretical modelling of mergers, 1D rotating, 3D, SPH etc.

"Life is infinitely stranger than anything which the mind of man could invent." ... The End.

