
Writing better C code: debugging and profiling

Alex Böhnert

Rob’s technical seminar

8.11.2013

1 / 13



Overview

Debugging
gdb

Profiling
gprof
valgrind

Finding memory leaks
memwatch
valgrind memcheck

Coverage analysis
gcov
-coverage

2 / 13



Memory leaks

How to use memwatch
WARNING: Do not use memwatch with multithreaded code

get it at
http://www.linkdata.se/sourcecode/memwatch/

Gets compiled directly into your code (just put memwatch.c
and memwatch.h in your source directory).
Put -DMEMWATCH in your compiler flags
Run your code normally – at the end, a file memwatch.log
gets written.

How to use valgrind
valgrind --leak-check=full mycode

3 / 13



What a debugger does (not) do

What it does
Find bugs!
Tell you the state of
variables etc. after crash
Lets you walk through the
program hierarchy (did I
pass that pointer correctly?)
Check the state of the
program during execution
Walk through your code line
by line

What it does not do
Logic bugs
“Heisenbugs”
find wrong code
Deliberate code-breaking
attempts

4 / 13



How to do it

Code prerequisites
Turn on ALL compiler warnings (-Wall doesn’t do that!)
Compiler flags: -g

NO -Ox, with x 6= 0
-DMEMWATCH to turn on memwatch; your source files need to
#include "memwatch.h"

How to run it
Emacs! The gdb-mode works really well...
M-x gdb filename
Set command-line arguments with “set args arg1 arg2
arg3”
Type run to run (r works, too)

5 / 13



Using gdb from Emacs

gdb commands: moving around
break myfunc.c:65:
Breakpoint at line 65 of...
r, run: Run the code
n, next: Next line
s, step: Step into function
(if possible, otherwise like n)
up, down: In the function
hierarchy
advance X, adv X: Run
code to line X
finish: Finish current
function, go up one step
c, continue: Run again
until the next breakpoint

6 / 13



Using gdb from Emacs

gdb commands: looking at your
code

p, print X: Print variable
X; if X is a pointer, print
adress
p *X: Print the data that
pointer X points to
p &X: Print the adress
(pointer) of datum X
p X[5]@10: Print values
5-15 of array X

More stuff
del 4, delete 4: Delete
breakpoint number 4
q, quit: Exit the debugger

7 / 13



Walkthrough

How not to debug
Lots of printfs

How to debug in a few simple steps
1 Check all compiler warnings – fix them!
2 Check memwatch (or other leak-checking tool) output – fix

those issues
3 If the code does not get that far, run it in the debugger and

look for anomalies at / before the point where it crashes
4 Use debugger to check what’s happening at the places where

your code produces strange / unexpected / wrong output
5 Repeat until the code works
6 If it’s too slow, move on to profiling

8 / 13



Profiling

What it does
Check which part of the
code takes how long
Can also check for
cache-misses etc.

What it doesn’t do
Tell you how to improve
your code!

What profilers are there?
gprof – very basic, but
useful (-pg compiler flag)
valgrind – more options
(also does memory
checking)
Other, specialized profilers
(from google, for intel
compiler, CUDAprof, ...)

9 / 13



gprof

How to use gprof
Turn optimization back on (if wanted)
Compile with -pg flag
Run your code normally – a file gmon.out gets written at the
end
Run gprof yourcodename – you get a list of functions and
how often they were called, how much time they took, etc.
(I usually pipe the output to less or a file)

10 / 13



Valgrind

A lot of tools
Memcheck
Callgrind
Cachegrind
Massif
Helgrind
DRD
And
Plenty
More

How to use it
Compile with -g (debug) flag
Call valgrind --tool=X mycode

For memcheck: Can specify output file,
otherwise look at summary at the end
Callgrind writes callgrind.out.PID file
after running your code (same for
Cachegrind)
callgrind annotate
cachegrind.out.PID will print formatted
output (we’ll look at it later)
callgrind annotate
cachegrind.out.PID myfile.c prints the
number of calls, number of cache misses,
etc. next to each line in your source file

11 / 13



General differences

memwatch, gprof
No extra program needed to
run it
Need special compiler flags
/ extra code
Fast! Very little runtime
difference with / without
Rather basic, but still
important / usable output

valgrind
An extra program runs your
code
Works without special
preparation in the code
Slow! Ca. factor 10-100
slower than normal
execution
Very detailed output
Lots more functionality

12 / 13



Summary and list of tools

Debugging
memwatch

valgrind (memcheck is the default tool)
gdb

Profiling
gprof

valgrind --tool=callgrind

valgrind --tool=cachegrind

callgrind annotate

kcachegrind – graphical output for cachegrind.out.PID
files

13 / 13


	Debugging
	Profiling
	Summary

