Writing better C code: debugging and profiling

Alex Boéhnert

Rob’s technical seminar

8.11.2013

/13

. Profiling
Debugging

f
= gdb] gpro'
m valgrind

Finding memory leaks Coverage analysis

® memwatch E gcov

m valgrind memcheck B -coverage

Memory leaks

WARNING: Do not use memwatch with multithreaded code
m get it at
http://www.linkdata.se/sourcecode/memwatch/

m Gets compiled directly into your code (just put memwatch.c
and memwatch.h in your source directory).

m Put -DMEMWATCH in your compiler flags

m Run your code normally — at the end, a file memwatch.log
gets written.

How to use valgrind

valgrind --leak-check=full mycode

What a debugger does (not) do

m Find bugs!
m Tell you the state of e
variables etc. after crash A lLesfe s

m Lets you walk through the
program hierarchy (did |
pass that pointer correctly?)

m Check the state of the
program during execution

m “Heisenbugs”
m find wrong code

m Deliberate code-breaking
attempts

m Walk through your code line
by line

How to do it

m Turn on ALL compiler warnings (-Wall doesn't do that!)

m Compiler flags: -g

m NO -0x, with x # 0

m -DMEMWATCH to turn on memwatch; your source files need to
#include "memwatch.h"

m Emacs! The gdb-mode works really well...

m M-x gdb filename

m Set command-line arguments with “set args argl arg?2
arg3”

m Type run to run (r works, too)

Using gdb from Emacs

gdb commands: moving around

m break myfunc.c:65:
Breakpoint at line 65 of...
r, run: Run the code

n, next: Next line

s, step: Step into function
(if possible, otherwise like n)
up, down: In the function
hierarchy

advance X, adv X: Run
code to line X

finish: Finish current
function, go up one step

c, continue: Run again
until the next breakpoint

(gdb) adv 95
(gdb) s
(gdh) s
(gdb)

(gdb)

(GUD)

(gdb) up

#1 ©x00000000008413dec in point_everything (x=x@entry=-8x&38bda,
g ry=ex7fffffffesea) at point_lensing.c:95

95 lens_init(lens,p->pixelscale,cosmo);
(gdb) down

#0 lens_init (lmod=Lmod@entry=ex7fffffffesse,
so@entry=0x7fffffffe4se) at lens_init.c:25

25 while (tmplens) {

(gdb) n

(gdb)

(gdb)

(gdb)

(gdb)

(gdh)

(gdb) Finish

Run till exit from #8 lens_init (1lmod=Imod@entry=ox7fffffffesso, |
9999982, cosmo=cosmo@entry=ex7fffffffe4ga) at lens_init.c:26
Breakpoint 2 at @x413ega: file point_lensing.c, line 1@8.

(gdb) |

-:**. *gud-test pointlens*

pa

pixelsize=0.0799999

Bot L41 (Debugger :run [function-fi

lens-=ell = gsl_vector_get(x, 1);
lens-=pl = gsl _vector_get(x, 2);
lens-=c_x = gsl_vector_get(x, 3);
lens-=c_y = gsl_vector_get(x, 4);

lens_init(lens,p-=pixelscale,cosmo);

/* calculate image positions in sp */

for (i=0; i=n_im; i++) {
sp_pos[i] = lenseq(pos[il,
xpos[i] = sp_pos[i].x;
ypos[i] = sp_pos[i].y;

Ll

src, lens, cosmo);

/* Get magnification of each image */
for (1=8; i=<n_im; i++)
mag[i] = get_point_mag(lens, src, cosmo, &pos[i]);
@# dist = sp_distance wht(xpos,

ypos, mag, n_im); 6

13

sing gdb from Emacs

gdb commands: looking at your

code

m p, print X: Print variable
X; if X is a pointer, print
adress

m p *X: Print the data that
pointer X points to

m p &X: Print the adress
(pointer) of datum X

m p X[5]010: Print values
5-15 of array X

m del 4, delete 4: Delete
breakpoint number 4

m g, quit: Exit the debugger

& \008\BB0", h180 = ©.699999988, omega = 0.300000012, lambda = @.599!
=1, dcie = 1}

(gdb) p *lens

$12 = {id = 0, ltype = 1, c_ x = 70.25, Cc_y = 70.0500031, z = 0.444
§19676816, 0_Z = -1.03802411e+34, 0_W = 4.59163468e-41, ell = 0.870
§.79252696, sc = 1, pA = 103.909593, pl = 593, p2? = A.100060001, p3
gpx = {-nan(ox7fffff), 0, -4.88202947e+33, 4.59163468e-41, -1.54723

@ens = 6x0, init = @x7fFFf7ffe130, mass = Ox401d8d <_init+21=, defls
(gdb) p *src

$13 = {id = 0, type = -1 '\377', X = 5.87920936e-39, y = 0, Z = 2.
§.708472713, 0.7 = 2.93712158e-42, 0w = 1.40129846e-45, flux = -na
@x = 4.59163468e-41, Cyy = -1.02351248e+34, CXy = 4.59163468e-41, P
@30), pl = 4.59163468e-41, p2 = -1.838082411e+34, p3 = 4.59163468e-4
§7fes58)}

(gdh) p mag[e]@a

$14 = {124.94888, 11.074482,
(gdb) p lens-=ell

$15 = 0.0700000003

(gdb) p *p

$16 = {lens = ex7Tffffffesse, src = ex7fffffffedbe, cosmo = Ox7FFf
§ = 2, size = 0.5, pixelscale = ©.0799999982, positions = @x638b4a,
4 0x6396a0, n_images = 4, Tit_this = oxe}

(gdb)

T

7.30637455, 5.53186941}

gud-test_pointlens Bot L99
lens_init(lens,p-=pixelscale,cosmo);

(Debugger :run [breakpoint:

/* calculate image positions in sp */

for (1=0; i=n_im; i++) {
sp_pos[i] = lenseg(pos[i], src, lens, cosmo);
xpos[i] = sp_pos[i].x;
ypos[i] = sp_pos[il.y;

/* Get magnification of each image */
for (i=0; i=n_im; i++)
mag[i] = get_point_mag(lens, src, cosmo, &pos[il);

®[] dist = sp_distance wht(xpos, ypos, mag, n_im);

/* Clean up */
free(xpos);
free(ypos);
free(mag);

return dist; 7/13

Walkthrough

How not to debug

m Lots of printfs

How to debug in a few simple steps

Check all compiler warnings — fix them!

Check memwatch (or other leak-checking tool) output — fix
those issues

If the code does not get that far, run it in the debugger and
look for anomalies at / before the point where it crashes
Use debugger to check what's happening at the places where
your code produces strange / unexpected / wrong output

Repeat until the code works

@ If it's too slow, move on to profiling

What prfirs are there

m Check which part of the
code takes how long

m Can also check for
cache-misses etc.

What it doesn't do

m Tell you how to improve
your code!

gprof — very basic, but
useful (-pg compiler flag)

valgrind — more options
(also does memory
checking)

Other, specialized profilers
(from google, for intel
compiler, CUDAprof, ...)

gprof

How to use gprof

m Turn optimization back on (if wanted)
m Compile with -pg flag

m Run your code normally — a file gmon.out gets written at the
end

®m Run gprof yourcodename — you get a list of functions and
how often they were called, how much time they took, etc.

m (| usually pipe the output to less or a file)

10/13

Valgrind

m Compile with -g (debug) flag

A lot of tools m Call valgrind --tool=X mycode

= Memcheck m For memcheck: Can specify output file,

m Callgrind otherwise look at summary at the end

m Cachegrind m Callgrind writes callgrind.out.PID file

m Massif after running your code (same for

) e Cachegrind)

= DRD m callgrind_annotate
cachegrind.out.PID will print formatted

= And output (we'll look at it later)

= Plenty m callgrind annotate

= More cachegrind.out.PID myfile.c prints the

number of calls, number of cache misses,
etc. next to each line in your source file

11/13

General differences

memwatch, gprof

m An extra program runs your

m No extra program needed to code

run it))
m Works without special

preparation in the code

m Slow! Ca. factor 10-100
slower than normal
execution

m Need special compiler flags
/ extra code

m Fast! Very little runtime
difference with / without

m Rather basic, but still

i m Very detailed output
important / usable output

m Lots more functionality

Summary and list of tools

m memwatch
m valgrind (memcheck is the default tool)
m gdb

Profiling

gprof

m valgrind --tool=callgrind
m valgrind --tool=cachegrind
B callgrind_annotate
|

kcachegrind — graphical output for cachegrind.out.PID
files

13 /13

	Debugging
	Profiling
	Summary

