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Galactic chemical evolution models require stellar nucleosynthesis yields as input data.
Stellar evolution models are used to calculate such yields but do not take into account the
fact that many stars are in binaries. The computing time required to explore the binary
star parameter space is usually considered to be prohibitively large. Therefore binaries,
except for type Ta supernovae and novae which are included in an ad hoc way, are ignored
in most Galactic chemical evolution models. In this dissertation synthetic nucleosynthesis
models are developed which approximate full stellar evolution models. Cunning methods
are employed to model shell burning in low- and intermediate-mass stars while high-mass
stars have their surface abundances fitted to their mass. Explosive yields are fitted to
published results. The synthetic nucleosynthesis model, with the addition of algorithms to
deal with mass transfer in binaries, is coupled to a rapid binary star evolution code. The
use of a synthetic model speeds up the calculation of stellar yields by a factor of about 107
and extends the analysis to binary stars.

Single- and binary-star yields are calculated for a range of initial mass and separation
distributions. A change in the primary or single-star mass distribution is most significant.
Changing the secondary mass or separation distribution has a smaller effect. Consideration
is then given to variation of the input physics to determine which free parameters are
important for the calculation of yields from single and binary stars. It is found that certain

parameters are important for some isotopes. Future prospects are then briefly discussed.
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1 Introduction

We used to think that if we knew one, we knew two, because one and one are two.

We are finding that we must learn a great deal more about ‘and’. Arthur Eddington

1.1 The Popular-Science Blurb

One star is trouble enough! We think we know one particular star in detail, the Sun. From
the earliest measurements of sunspots to www.spaceweather. com, we think we know about
the Sun. We know, although the author of this dissertation does not. Certainly he does
not understand exactly how convection works in the Sun despite his years of admiration
of convection on the Earth. What causes the coronal mass ejections? Where does the
magnetic field come from? Why does it flip every eleven years? Why did we, on Earth,
get blasted by the strongest ever recorded solar flares last month when the solar cycle is
near a minimum? Many questions remain unsolved, even for our nearest star.

Despite this, accurate models of the Sun can be made with some relatively simple as-
sumptions. Spherical symmetry, local thermodynamic equilibrium, conservation of mass
and neglect of radial acceleration lead to a reasonable Solar model. It remains to determine
where the radiation that keeps the Sun luminous actually comes from and how it gets out.
The source is the nuclear pyre burning in the core which primarily, as far as the energy
budget is concerned, converts hydrogen to helium — a process called nucleosynthesis. Mat-

1

ter is converted to energy at a rate Ly /c® ~ 4.3 x 10°kgs™! in a core with temperature in

excess of 1.5x 107 K and a pressure of about 250 x 10? atmospheres. This energy generation



1 Introduction

rate is unimaginably huge, but to burn the whole Sun, of total mass 1 Mg ~ 2 x 103 kg,
to helium at this rate would take 2 x 102 years.

How does the energy get out from the core? The photons can carry energy by diffusion
through the Solar matter for most of their journey to the surface, a process so slow it can
take millions of years for a photon to escape. For the final third or so of their journey to the
solar surface, measured by the amount of mass they have travelled through relative to 1 My,
energy is transferred by a much faster method, convection. This is similar to thunderstorms
on Earth. For most of the year, solar energy is transferred vertically upwards from the
ground by either diffusion or advection. However, in the summer the rate of heating of
the ground exceeds the amount which can be carried upwards by these mechanisms. The
air becomes unstable to convective motion. Hot, rarefied blobs of air rise while cool, dense
blobs fall and violent weather systems result. The rate of vertical motion in these systems
can be many metres per second, compared to the tranquil centimetres per second associated
with advective weather systems. The rate of energy flow, because energy moves with the
hot blobs, is similarly increased. Solar convection is not so different. The outer layers
are cooler than the core so their opacity, the measure of how resistant a gas is to light,
rises. This impedes the flow of photons by diffusion so the only viable method of energy
transport is convection. A simple model of convection is employed in models of stars,
usually calibrated to this solar convection zone.

Models of the Sun incorporate all the above features and with tweaking of some free
parameters all sorts of aspects of the Sun can be calculated such as its luminosity — both
in photons and neutrinos — and composition. Because this composition varies as hydrogen
burns to helium we can model a series of snapshots in time and eventually create a whole
evolutionary sequence — starting from a ball of gas and ending with the death of the star.
Thus stellar evolution is born. We estimate the Sun is about 4.5 x 10? years old, which
agrees well with geological evidence. We know it is brightening as it ages. We also know
it will expand to form a red giant in about 6 thousand million years, perhaps swallowing
the Earth as it does so.

So much for our one star. There are other ones out there. What about those? Humans
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have been observing stars for thousands of years, the earliest to do so were probably the
Chinese although the Babylonians, were they around today, would also stake a claim. Such
observations tell us there is a menagerie of stars of different colour and brightness. Later,
astronomers analyzed spectra of the light from these stars to reveal they are basically black
body emitters, but have both absorption and emission lines. These lines are indicative of
the chemistry on the surface of the star. In 1868 observations of stellar absorption lines
in the Sun’s spectrum by Frankland & Lockyer led them to suggest the presence of a new
element, which he called helium. It was not until 1895 that chemists finally isolated the
gas in the laboratory (Ramsay, Collie & Travers, 1895). Other lines corresponding to
isotopes of carbon, oxygen, magnesium, sulphur, silicon and other metals are commonly
observed. In some red giant stars heavy-metal oxides and organic molecules have been
detected. In some of the coolest stars there is more carbon than oxygen, very different
to the solar C/O ratio of about 0.4. In these same stars technetium has been observed.
This element is radioactive with a lifetime of 2.5 x 10° years so what we are seeing is real-
time nucleosynthesis. There is something going on inside these other stars which does not
happen in the Sun. It turns out that the initial mass of the star is the key to its evolution,
with its initial composition also playing a part.

But then there is one and one — which is usually two! Most stars exist in some kind of
multiple system, 57% according to Duquennoy & Mayor (1991). What is the effect of a
companion star? This depends on a number of factors. Most important are the masses of
the stars, conventionally measured in solar units, and the orbital period, or alternatively,
the separation because they are related by Kepler’s law. If the separation is large enough
that the stars do not interact then their evolution is not affected and they behave like
single stars. However, many binary systems have stars which are close enough to interact
with each other. This usually happens when one of the stars becomes very large, such as
during the red giant phase of evolution. Matter can leave the surface of the larger star
and flow on to the companion, a process known as Roche-Lobe Overflow (RLOF). Such
mass loss tends to make the mass-losing star expand further and so mass loss continues.

The smaller star usually cannot accept the matter flowing on to it and the stars’ envelopes
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merge to form a common envelope. The fate of the stars after this depends on whether
their cores merge — the case of one and one is one — or perhaps they survive as individuals
and the envelope is lost from the system. This latter possibility is a crucial step to the
progenitor of a type Ia supernova (SNIa). These thermonuclear explosions are critical to
our understanding the expansion rate of the Universe and are the main source of iron in
the Universe.

Interaction comes in other forms. Some stars have strong stellar winds, perhaps up to
1073 Mg yr~t. The companion star travels in the wind, probably accreting some of it. But
what if they have a wind themselves? Then the winds interact, shock and perhaps mix.
Stars with these strong winds tend to be quite evolved and may have interesting surface
chemistry, which pollutes the companion star. Barium stars, with strong Ba lines in their
spectra, are thought to be made by this method. Explosions also tend to complicate
matters. Apart from SNela there are also type Ib, Ic and II supernovae which result from
explosions of stars initially eight or more times as massive as the Sun — or, in the case
of binaries, perhaps from mergers of smaller stars. Such explosions are major sources of
carbon, oxygen, neon, magnesium, sulphur and iron. Sometimes accretion of matter on to
a very compact old star known as a white dwarf (WD) leads to thermonuclear explosions
called novae, which are sources of minor isotopes such as *C, ®N and '7O.

Most of the stars we can identify exist in our Galaxy, the Milky Way, a vast gravitation-
ally bound system of about 10! stars, most of which lie in a disk about 7 x 10° light years
across. The effect of stars on the chemistry of the Galaxy is the realm of Galactic Chem-
ical Evolution (GCE) models. The first generation of stars had abundances of primordial
matter left over from the Big Bang, about 76% hydrogen, 24% helium and a tiny fraction
of heavier isotopes, which are known in astronomy as the metals. The fraction of these
metals in matter, as measured by mass, is known as the metallicity and is denoted by
the symbol Z, while the mass fractions of hydrogen and helium are denoted by X and
Y respectively so X +Y + Z = 1. The first stars had Z = 0. They formed, grew old
and lost their material, by wind or explosion, to the region between the stars known as the

Interstellar Medium (ISM). The ISM contains the gas from which later generations of stars
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form. Importantly, the primordial stars process their hydrogen (and helium) in their cores,
converting them to heavier isotopes such as helium, carbon, oxygen and iron. The mass
lost from the stars has a far higher Z than the input matter — for example the matter from
a type Ib (Ic) supernova contains no hydrogen (or helium) at all. But the next generation
of stars does not form directly from the processed material, rather there is dilution with
the primordial material. The ISM material then goes on to form new stars with the mixed
material and the cycle continues. The Sun has a metallicity Z = 0.02, so 2% of it is not
hydrogen or helium. This metallicity is typical of Galactic disk stars, known as Population
I[. There is another population, imaginatively named Population II, with Z =~ 0.001 which
inhabits a halo around the Galaxy. Population III stars have Z = 0 and are currently a
theoretical construct — none has been observed.

The amount of each particular chemical isotope expelled from a star during its lifetime is
its chemical yield. The yield is a function of a star’s initial mass and composition. Stellar-
evolution models are required to make these calculations for a wide range of initial Z, from
zero to perhaps twice solar. Models of the Galaxy which take into account production
and dilution of helium and metals and star formation from the interstellar gas are then
constructed. The calculated chemical yields are a direct input to these GCE models. The
yields are function of M, ¢t and Z where M is the mass of the star and ¢ is time since its
birth.

The problem with the above scenario is that these stars are all assumed to be single
stars — an approximation which does not look good when 60 —80% of stars are in multiple
systems! Some of the binaries are wide systems and so do not interact, but this still leaves
many in close binaries, most of which interact in some way during their lifetimes. What
is the effect of having a companion star on the stellar yield? This is the primary question
addressed in this work.

It should be noted at this point that in a system containing three or more stars, the
system can usually only survive if it is hierarchical. Triples make up 9% and quadruples
2% of solar-type stars (Abt & Levy, 1976). In a system of three stars, two of them are in

a close binary and the third orbits at some much larger distance. Similarly for a four-star
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system there are probably two close binaries.
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1.2 Stellar Evolution and Nucleosynthesis

Carter: "Well, that means something inside this pyramid is slowing down neu-
trinos. Normally neutrinos pass right through ordinary matter, no matter
how dense. | mean, something like five hundred million billion just passed

through you."

O’Neill: "No matter how dense."

Stargate “Crystal Skull”

The evolution of single stars depends primarily on two things, the initial mass, M, and
metallicity, Z. The star commences its life as a ball of gas. It collapses under its own
gravity until it is hot and dense enough to ignite hydrogen in the core. The heat and
pressure generated by nuclear burning counteracts gravity, halts the collapse and a star is
born. The following discussion is for solar metallicity stars, Z = Z, = 0.02, although for

stars considered in this work, with 107 < Z < 0.03, the basic ideas are the same.

The lightest isotope, and the first to provide a significant energy source, is hydrogen,
'H, which is burned to helium, *He. There are two ways to burn hydrogen, the pp chain
and the CNO cycle. The pp chain operates at lower temperatures than the CNO cycle and

follows one of the following reaction chains

'"H4+'H — D+e" 4+ v, (1)
D+'H — *He + v, (2)

then either the pp-I chain
SHe +*He — “He +2'H (3)
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or the pp-II chain

*He +*He — "Be + 7 (4)
Be+e — Litv (5)
Li+p — 2'He (6)

or the pp-III chain
*He +*He — "Be + 1~ (7)
Be+p — *B+y (8)
B — *Be+em +v 9)

then

*Be — 2'He. (10)

All three chains convert four protons to one helium nucleus, albeit by different routes.
The three different chains operate at rates which are functions of the temperature and
composition. For X =Y the pp-I chain dominates at temperatures below 1.3 x 10" K and
above 3 x 10" K the pp-III chain activates while between the two pp-II is most important.
The energy liberated is calculated from AE = AM ¢* ~ 26.7 MeV per helium nucleus,
where AM is the mass difference between four hydrogen nuclei and a helium nucleus. The
pp chain powers the nuclear core of the Sun and the neutrinos produced can be directly
observed because they pass through the Sun almost unimpeded. The reaction rates are a
function of complex nuclear physics — fortunately for the purposes of stellar evolutionists,

such reactions rates are tabulated (e.g. Angulo et al., 1999).

At high temperatures the CNO cycle operates. This involves a complicated series of
reactions which can actually be split into two cycles, the CN and ON cycle, as in table 1

(see also section 2.8). The net effect of the cycle is the same as the pp chain, to convert
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CN bi-cycle ON bi-cycle
BN — BC 4ot 4 150) — BN 4 et + 1
14N+p—>150+’y 16O+p—>17F+”}/
“N+p — C+'He ""O+p — “N+'He
2C +4p — P2CH+4He + 2t + 20 + 3y | UN +4p — N +%He + 2e™ + 2v + 3y

Table 1: The CNO cycle nuclear reactions. The left and right columns separate the two
halves of the bi-cycle. The bottom row shows the net result of the bi-cycles.

four protons into one helium nucleus, but it requires other isotopes (}2C, 3C, 1N, 5N,
150, 10 and '"F) to act as catalysts. The number of CNO and '"F nuclei is conserved,
although the CNO cycle acts to change their relative abundances. Careful analysis of the
CNO cycle (Clayton, 1983) leads to the result that the main component (~ 98.5%) of
CNO-processed material, if it has time to reach equilibrium, is 4N.

Whatever the source of energy, all stars go through a phase called the Main Sequence
(MS; stellar-type acronyms are defined in table 2). During this time steady hydrogen
burning occurs in the stellar core, by the pp chain in low-mass stars or the CNO cycle
in higher-mass stars. The length of time spent on the MS is a highly non-linear function
of the initial mass, 1.1 x 10'%years for a 1M star, 6.8 x 107 years for a 6 M, star and
4.3 x 108 years for a 50 M, star. The MS ends when hydrogen in the core has been converted
to helium. No more energy can be extracted, so the star resumes the course it took prior
to hydrogen burning, and restarts its collapse under its own weight.

During the relatively short Hertzsprung Gap (HG) phase, which typically lasts for less
than a few per cent of the MS time, the core contracts. At the same time the stellar
envelope expands and cools. Cooler gas has a higher opacity so a convective envelope
develops. Collapse is stopped by hydrogen ignition in a shell around the core, which
provides a new source of energy, and for a while the star remains on the Giant Branch
(GB). Because of its lower temperature the star is very red and because of its size it is very
bright. Up to this point, the chemical abundances at the surface do not alter from their

initial abundance. The convective envelope which forms on the GB changes this because it
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Stellar Type Acronym
0 Low-mass Main Sequence
1 Main Sequence MS
2 Hertzsprung Gap HG
3 First Giant Branch GB
4 Core Helium Burning CHeB
5 Early Asymptotic Giant Branch EAGB
6 | Thermally-Pulsing Asymptotic Giant Branch | TPAGB
7 Helium Main Sequence HeMS
8 Helium Hertzsprung Gap HeHG
9 Helium Giant HeGB
10 Helium White Dwarf HeWD
11 Carbon-Oxygen White Dwarf COWD
12 Oxygen-Neon-Magnesium White Dwarf ONeWD
13 Neutron Star NS
14 Black Hole BH
15 Massless Remnant,

Table 2: Stellar types as defined by SSE/BSE.

mixes material from the core to the surface, in an event known as first dredge-up. Section

2.3 examines this process in detail. Stars with M = 7Mg have a very short GB phase

and stars with M 2 13.2 Mg have no GB at all because helium burning ignites in the core

before shell hydrogen burning can begin.

A star leaves the GB when conditions in the core are hot and dense enough to allow

ignition of the next nuclear-burning stage. It becomes a Core Helium Burning (CHeB)

star, burning by the triple-a reaction,

3'He — 2C.

There is also some a-capture on carbon to produce oxygen,

1QC+O[ SN 160'

(11)

(12)

For low-mass stars, M < 2.0 My, helium ignition occurs in an electron degenerate core,

10
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so a nuclear runaway occurs known as the helium flash. There are no consequences for
surface nucleosynthesis (Stancliffe, private communication). Intermediate- and high-mass
stars do not experience this flash but ignite helium gently because their cores are not highly
degenerate. The star proceeds to evolve with a helium-burning carbon- and oxygen-rich
core surrounded by a helium envelope and a hydrogen-rich envelope.

The evolution that follows is similar to that of the MS except helium takes the place of
hydrogen. Eventually central helium runs out and the star contracts. Burning restarts in
a helium-burning shell surrounding the core and the star expands again, this time on the
Early Asymptotic Giant Branch. The expansion and cooling of the envelope again increases
the opacity and causes a deep convection zone to develop. For stars with M 2 4 Mg the
convective envelope becomes deep enough to mix processed material from the core to the
surface in the second dredge-up. Surface abundances of both hydrogen- and helium-burned
material increase (see section 2.4) and the helium-core mass is reduced as the convective
hydrogen-rich envelope eats into it.

The helium shell eventually meets the hydrogen envelope either by core growth or inward
movement of the hydrogen envelope. The hydrogen shell reignites and the two burn alter-
nately, because a thin helium-burning shell is unstable (Schwarzschild & Harm, 1965), on
the Thermally Pulsing Asymptotic Giant Branch (TPAGB). These stars are rich sources
for nucleosynthesis because the particular twin shell geometry and convective envelope al-
low the products of helium burning, particularly 12C, to reach the stellar surface. This is
the favoured method of formation of carbon stars, stars with surface C/O > 1. The most
massive TPAGB stars, 4 < M /Mg < 8, have hot enough convective envelopes that hy-
drogen burning occurs at the base of the envelope, known as Hot Bottom Burning (HBB).
The CNO cycle, as well as the NeNa cycle (section 2.9) and the MgAl cycle (section 2.10),
process a wide variety of isotopes to give a very non-solar abundance at the surface. Slow
neutron capture (the s-process) may occur in the region between the burning shells and
leads to the production of heavy isotopes such as barium, yttrium and lead. TPAGB stars
have enormous radii, up to 1000 Ry, so matter at the surface is not very strongly bound

and mass-loss rates are high. This causes the hydrogen envelope to be lost, possibly form-

11
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ing a planetary nebula, so further nuclear burning is impossible. All that is left is the now
extinguished CO core, which cools to become a Carbon-Ozygen White Dwarf (COWD).

While most stars follow the above evolutionary sequence, massive stars, with M = 8 M,
ignite carbon as they contract after core helium burning. Further burning is relatively
quick, through neon-, oxygen- and silicon-burning, until an iron core forms. Beyond iron,
nuclear burning is endothermic, so the stellar core lacks an energy source and continues
to collapse. At a density about three times that of an atomic nucleus the core rebounds
due to the Pauli exclusion of neutrons and a shockwave moves outward through the star.
Most of the energy is released as neutrinos which interact! with the envelope, driving it
off in a type I supernova (SNII) explosion. Material both from the core and the envelope
may escape to the ISM, so supernovae are another source of metals (section 3.7). What
remains of the star forms either a neutron star (NS) or a black hole (BH) if it is massive
enough.

Even more massive stars, M 2 23 Mg, are affected by severe mass loss during their
evolution. They lose enough mass that their hydrogen envelopes are completely stripped
off before their cores collapse, exposing their helium cores. Observationally, they are known
as Wolf-Rayet (WR) stars (section 3.1). They evolve on the Helium Main Sequence (HeMS)
because they are similar in structure to a normal MS star but with hydrogen replaced by
helium. These then evolve on the Helium Hertzsprung Gap (HeHG) and Helium Giant
Branch (HeGB) by analogy with the HG and GB. Wind loss is not strong enough (at solar
metallicity) to prevent a core-collapse SN during these latter phases. Such a supernova
does not contain any hydrogen so is observed as a type Ib (SNIb). Again, these stars are
an important source of metals.

Binary stars complicate the above picture (see e.g. Batten, 1995 for a review). The
presence of a companion may cause mass transfer. This alters evolution by either increasing
or decreasing the stellar mass and, less importantly, pollution of the accreting star. Some
phases of evolution are associated with large radii (e.g. GB, AGB and massive HG stars)

so are likely to be truncated by the presence of a companion. Wolf-Rayet stars form owing

!The interaction is very weak but there are a lot of high-energy neutrinos in an exploding star.

12



1.2 Stellar Evolution and Nucleosynthesis

to the removal of their massive progenitor’s hydrogen envelope. Removal of a hydrogen
envelope from a RG star leads to an exposed core which, lacking a source of nuclear fuel,
cools to form a Helium White Dwarf (HeWD) star. On the other hand, mass lost from a
star must go somewhere. Sometimes it is lost from the system but it can also accrete on
to the secondary star or perhaps the stars merge.

As well as evolutionary effects on a companion, pollution leads to production of chem-
ically peculiar stars. A few examples are presented in section 4.7, including a dwarf car-
bon star. The interested reader may wish to make his or her own by use of the online
binary_c/nucsyn front-end at http://www.ast.cam.ac.uk/“rgi/cgi-bin/binary2.cgi.

There are also the binary-specific thermonuclear explosions such as novae (section 4.5.1)

and type Ia supernovae (SNela, section 4.5) which contribute metals to the ISM.

13



1 Introduction

1.3 Stellar Models

O'Neill: “Weren't you listening? Nintendos pass through everything.”

Stellar evolution is thought to be reasonably well understood because of the success
during the last 40 years in making detailed stellar models. Such models are really just
solutions of the set of stellar structure equations (see e.g. Kippenhahn & Weigert, 1994 for

in-depth discussion or Prialnik, 2000 for an introduction), one for hydrostatic equilibrium

dP Gm
- T 13
dm Anrd’ (13)
mass conservation
dr 1
- - 14
dm  4mar2p’ (14)
nuclear energy generation
dL
i 15
T =€ (15)
and radiative transport of the energy flux F',
dT 3 F
- - (16)

dm ~ Tac T (A0

Also required is a method to transform eq. (16) when material is convectively unstable,
an equation of state for the gas and equations to follow each isotope as it is created or
destroyed. Usually just a few isotopes are considered, such as 'H, *He, '2C, N, 0 and
2Ne, because the structure of the star depends only on these. Implicit in these equations
are tables of nuclear reaction rates and opacity data. Codes have been written to solve all

the above equations and this is what leads to the stellar evolution story told above.

14



1.3 Stellar Models

Single stars are usually modelled with two free parameters, the mass and metallicity?. A
complete set of models from the MS to TPAGB may take minutes, hours or days to make
depending on the required accuracy and the code used. The Eggleton code, for example, is
quite capable of modelling the TPAGB phase quickly, if the resolution is deliberately kept
low so that thermal pulses are avoided. This is not a particularly satisfactory situation
from the nucleosynthesis point of view because the third dredge-ups will also be ignored.
However, the same code does an good job of modelling the previous stellar evolution phases.

The time required to make detailed nucleosynthesis models containing many isotopes
is even longer. The low- and intermediate-mass nucleosynthesis models used in this work
require the output from the Mt. Stromlo Stellar Evolution Code (Frost, 1997, Wood &
Zarro, 1981) to be coupled with the nucleosynthesis code of Cannon (1993). Such output
can take weeks to produce, per star. This is not a problem on a grid of, say, 10 stars over
10 metallicities. Then 100 stars take a few hundred weeks of CPU time. Such calculations
are not impossible given a dozen reasonable PCs and a little patience.

Binary stars are a far more difficult prospect. One way of making detailed binary models
is to combine a single star evolution code with a prescription for binary mass transfer and
orbital changes. Such an option has existed in the Eggleton code for some time and has
recently been improved with Eggleton’s TWIN code, which actually computes the stellar
structure of both stars implicitly and at the same time. It does not take much more time
to make 100 binaries than it does to make the 100 single stars described above. The
problem is the number of parameters which go into binary evolution. As well as the mass
and metallicity, there is the mass of the other star, the period (or separation) of the orbit,
the orbital eccentricity and free parameters associated with binary-specific mechanisms
such as RLOF, common envelope evolution, enhanced wind-loss, tidal effects, supernova
kicks etc. Soon, instead of making 100 stars, 10® or more stars are required. If detailed
nucleosynthesis is required for these stars, and each model takes a week to make, that is

about 200,000 years of CPU time. The average PhD student, taking three years, would

2While the models actually contain many other free parameters, M and Z are by far the most important
to describe the evolution of a single star.
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require about 60,000 fast PCs (and competent support staff to manage them). Clearly
such an undertaking is beyond current resources. A very limited parameter space study
was made by De Donder & Vanbeveren (2002) using rather old detailed models although,
at the time of writing, their chemical yields still remain unpublished.

Synthetic stellar models are a way around the problem. The idea is to fit the results
of detailed single star models to simple analytic functions. The need to solve a system of
coupled differential equations is removed and the code is sped up by a huge factor. To
calculate nucleosynthetic yields for a 4 M, star takes 0.09s with the synthetic model but
many days for a full evolution model. Appendix F gives some data on code runtimes. The
other great advantage of a synthetic model is the ability to change some of the input physics.
Many aspects of stellar evolution are quite uncertain such as mass-loss rates, angular
momentum transfer between binary-star components, common envelope loss efficiency and
supernova, kick velocities to name just a few. All these can be varied in a synthetic model
and the results will be ready before tea time (or at least by the time you get back from the
pub!). A synthetic model should not suffer the numerical failures associated with detailed
stellar evolution codes.

The main disadvantage of a synthetic model is a loss of accuracy. Fitted formulae can
never exactly reproduce the detailed models and sometimes, especially when dealing with
highly non-linear phenomena, slight differences between the models can change the outcome
by a large amount. This problem is not so important when entire populations of stars are
considered. Far more important is the distribution of mass (the Initial Mass Function or
IMF), metallicity and separation in a whole population of stars (see chapter 5).

Synthetic models were introduced out of necessity in the late 1970s to model TPAGB
stars (Wood & Cahn, 1977; Iben & Truran, 1978; Renzini & Voli, 1981). Computing power
and understanding of the physics of the stars was more limited than today. However, the
models included third dredge-up in an approximate way and led to some explanation of the
formation of carbon stars. Improvements followed in the 1990s, with the purely synthetic
models improved by Groenewegen & de Jong (1993) and van den Hoek & Groenewegen
(1997) who included CNO HBB. More detailed nucleosynthesis was considered by Forestini

16
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& Charbonnel (1997) although with a more limited evolutionary model. A slightly different
route was taken by the Padova group (Marigo, Bressan & Chiosi, 1998; Marigo, 1999, 2001)
who use a synthetic prescription for the stellar core but solve the stellar evolution equations
in the envelope (so-called envelope integration models). Such models are probably still too

slow to model a large parameter space.

Application to other phases of stellar evolution is not necessary, except when one would
like to model multiple stars or globular clusters. A project to develop analytic fits to
single star evolution was started by Tout et al. (1996) who fitted Zero-Age Main Sequence
(ZAMS) radii and luminosities to detailed stellar models constructed with the Eggleton
code. This was extended by Hurley, Pols & Tout (2000) who fitted stellar luminosities,
radii and lifetimes over the entire evolution of the star to the detailed models of Pols et al.
(1998). This is the basis of the rapid Single Star Evolution (SSE) code. Hurley, Tout & Pols
(2002, HO2) extended this to the rapid Binary Star Evolution (BSE*) model which includes
prescriptions for orbital motion, RLOF, common envelope evolution, wind accretion, tides
and supernova kicks. The algorithm has been included in Aarseth’s NBODY code to produce
models of small globular clusters such as M67 (Hurley et al., 2001, see also Jarrod Hurley’s
PhD thesis).

This dissertation extends BSE to include the nucsyn library, a comprehensive synthetic
nucleosynthesis package. Fits to the detailed nucleosynthesis models of Karakas, Lattanzio
& Pols (2002, K02; see also Amanda Karakas’ PhD thesis) include first, second and third
dredge-up. Intershell abundances are fitted to detailed models and extended to include
s-process isotopes. A simple shell-burning HBB model is developed to deal with CNO,
NeNa and MgAl burning cycles. The models of Dray et al. (2003) and Dray & Tout (2003,
see also Lynnette Dray’s PhD thesis) are used to fit surface abundances for massive stars.
Supernovae and novae are included by fitting to published detailed explosion models. Mass
transfer on to and mixing into a companion is dealt with in a consistent way. The C version

of BSE in conjunction with nucsyn is known as binary_c/nucsyn.

3Madness!
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A word of caution. Many approximations go into the nucsyn code. Every effort has
been made to fit the detailed models as accurately as possible, but given realistic time
constraints the fit is not always as good as one would like. Also, the detailed models are
almost certainly wrong in some respect, notably the mass-loss rates, so a perfect fit is
pointless.

It is very difficult to estimate the error on any output value from the synthetic code
given the large number of input variables. All that can be done is to vary each of these
variables within reasonable ranges to give an idea of the uncertainty.

The nucsyn model is a prototype but the only one of its kind and, in the case of binary
stars, the only one capable of exploring the parameter space. It can be improved in many

ways but for now, it will do.
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1.4 Dissertation Outline

Mellon: “Colonel, you seem pensive. .."

O’'Neill: “No. | was just thinking."

Stargate “2001”

The synthetic model description is split into three chapters. Chapter 2 deals with low-
and intermediate-mass single stars including first, second and third dredge-up, HBB, the
s-process, radioactive decays, calibration of third dredge-up and comparison of yields to
the detailed models. Chapter 3 contains fits to surface abundances in high-mass single stars
and helium stars, yields from core-collapse supernovae and masses of NS/BH remnants.
The effect of a binary companion is considered in chapter 4, notably wind accretion and
mixing, RLOF, stellar mergers, novae and type-la supernovae.

The calculation of stellar yields follows in chapters 5 and 6. The former deals with
changes in stellar distributions, the latter with changes in the input physics. Finally, in
chapter 7 single and binary stars are compared for a solar metallicity population to finally
answer the question, what is the effect of duplicity on chemical yields?

Appendix A details some useful algorithms. Appendix B contains the fitting formulae
coefficients and solutions to the shell burning differential equations. Appendix C contains
the calibration of the HBB stars to the detailed models. Appendices D1-D3, D4 and E
detail the mass-loss prescriptions used, the default initial mass function (KTG93) and
Pols’ prescription for the free parameter Acy. Appendix F1 compares the runtime of the

synthetic code to full evolution codes. Table 3 contains a list of useful acronyms.
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Acronym /Symbol Meaning Notes
Z ZAMS Metallicity
Zy Current metallicity of the star
M Current mass of the star
My anis ZAMS mass of the star Can be increased by
accretion/merging on
the MS
M, Initial mass of the star
Muc Mass of the star when it leaves the MS
X; Surface mass fraction of element j
Xi Initial surface mass fraction Can be redefined by
accretion /merging on
the MS
Xi Mass fraction of isotope j in the

TPAGB intershell

20

Table 3: Table of variables.




2 Low- and Intermediate-Mass Stars

From the point of view of nucleosynthesis, low- and intermediate-mass stellar evolution is
dominated by a series of mixing events known as dredge-ups which bring nuclear processed
material to the surface. First dredge-up occurs on the first giant branch, second dredge-up,
if it occurs, at the beginning of the AGB and third dredge-up during the TPAGB. All three
processes have their origin in convective mixing of processed material from near the core to
the surface where the material can be lost in a stellar wind or binary interaction. Between
the dredge-ups the surface layers are radiative so while nuclear burning continues in the
core there is no connection between this processed material and the surface and enriched
material cannot leave the star. Figure 2 shows a mass-coordinate vs time view of these

dredge-up events.

The distinction between low- and intermediate-mass stars is that low-mass stars undergo
degenerate helium ignition — the helium flash — at the tip of the GB while intermediate-mass
stars do not. The effect of this flash on the surface abundances is thought to be negligible
(Stancliffe, private communication). Intermediate-mass stars also ignite helium at the tip
of the GB but in a non-degenerate core, so there is no flash rather a transition to steady
burning. Typical mass ranges are M < 2 M, for low-mass stars, 2 < M/ Mg < 7 — 8 for
intermediate-mass stars, the uncertainty owes to a slight metallicity dependence. The upper
mass limit depends on factors such as convective overshooting and wind-loss prescription,

e.g. for the Padova models (see below) the upper mass is 5 M.
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H, He H, He

mass ———

Figure 2: Mass co-ordinate vs time for an intermediate mass star with M = 4 Mg. Pink
regions are convectively mixed, vertically hatched regions are burning shells. This
figure is based on real Eggleton code output, courtesy of Onno Pols.
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2.1 The Model Sets

Four sets of full stellar evolution models are used to determine nucleosynthesis in low- and

intermediate-mass stars.

e The Monash models (Karakas et al., 2002, K02) are the basis for the analytic fits in
this chapter for all isotopes except those involved in the s-process. They were con-
structed using the Monash version of the Mount Stromlo Stellar Evolution Code and
cover the mass range 1 < M/ Mg < 6 and metallicity range 0.004 < M/ Mg < 0.02,
as well as 1 < M/Mg <225, Z =10"* and M = 6.5Mg, Z = 0.02. These models
are calculated with the wind-loss prescription described below (eq. 32) and without
convective overshooting. The TPAGB phase, including third dredge-up and HBB, is
modelled in detail. Nucleosynthesis for stable elements up to °Fe is calculated using
the post-processing code of Cannon (1993, and Karakas, private communication).
These models are the basis of the synthetic code described in this chapter because
they provide evolution to almost the end of the TPAGB, detailed nucleosynthesis up

to iron and cover a wide range of mass and metallicity.

e The Eggleton models (Pols et al., 1998) which are the basis for the SSE code of
Hurley et al. (2000). Models with (OV) and without (NOV) convective overshooting
were calculated in the mass range 0.5 < M/M, < 40 with 1074 < Z < 0.03.
While the mass and metallicity range covered by these models is greater than the
Monash set nucleosynthesis is limited to ‘H, “He, 2C, N, 60, Ne and **Mg where
Ne =2 Ne +22 Ne and N represents everything else. The AGB is modelled but with
insufficient time resolution to obtain thermal pulses so these models are not especially

useful for creation of a synthetic TPAGB model.

e The FRANEC models (Gallino et al., 1998) were calculated specifically to model the
s-process in TPAGB stars and are used to evaluate s-process abundances appropriate

for intershell material at each third-dredge up (Lugaro, private communication, see
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2 Low- and Intermediate-Mass Stars

section 2.11 below). The models have masses 1.5 M), 3 M, and 5 My, and metallicities

0.02, 0.006, 0.002, 0.005 and 10~*,

e The Padova group’s models (Girardi et al., 2000) are probably the most popular
set of models in current use and form the basis of the envelope integration code of
Marigo (2001). They include convective overshooting (OV) except for one model set
(NOV) at Z = 0.019 but not mass loss and cover the mass range 0.15 < M/ Mg <7
and metallicity range 4 x 107* < Z < 0.03. The models include first and second
dredge-up but do not extend to the TPAGB. Nucleosynthesis includes 'H, *He, '2C,
13Q, MN, 15N, 160, 170 and O but no isotopes beyond this. Note that where the
Padova models are used to compare with the others the Z = 0.019 sets are referred

to as Z = 0.02.

2.2 Initial Abundance Sets

The traditional' choice of initial isotopic abundance mix in stellar models is to use the
solar abundance set of Anders & Grevesse (1989, hereafter AG89) and to scale isotopes
heavier than helium with a factor Z/Z.;. The Monash models adopt this approach for
Z = 0.02 and Z = 10~* but use observed isotopic abundances from the Magellanic Clouds
(Russell & Dopita, 1992) for Z = 0.008 and Z = 0.004. In order to fit the change in surface
abundance to the Monash models it is necessary to use the same initial abundance set.

Table 4 shows that the difference between the choices are quite significant, up to a factor

of 4 for N in the SMC.

2.3 First Dredge Up

Prior to ascent of the giant branch the products of internal nucleosynthesis are generally

not visible at the surface of the star. The situation inside the star is different. During the

'Recently, at least!
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2.3 First Dredge Up

Z =0.02 LMC Z = 0.008 | 22 [ SMC Z = 0.004 | 2ME
™ 0.68720 0.73689 0.74840
‘He 0.29280 0.25510 0.24760
12C 1 2.92593 x 1073 | 9.69593 x 107+ | 0.83 | 4.82297 x 10~* | 0.82
1.17037 x 1072 5.85186 x 10~
13C | 4.10800 x 107 | 2.88281 x 107° | 1.75 | 1.49927 x 107> | 1.82
1.6432 x 107° 8.216 x 107
UN | 8.97864 x 107* | 1.42408 x 10™* | 0.40 | 5.10803 x 107° | 0.28
3.59146 x 10~ 1.79573 x 1074
15N | 4.14000 x 107¢ | 2.90500 x 10=¢ | 1.75 | 1.51090 x 1076 | 1.82
1.656 x 107° 8.28 x 1077
160 | 8.15085 x 107% | 2.63954 x 10~% | 0.81 | 1.28308 x 1073 | 0.79
3.26034 x 1073 1.63017 x 1073
170 | 3.87600 x 107¢ | 2.72000 x 10=¢ | 1.75 | 1.41459 x 1076 | 1.82
1.5504 x 1075 7.752 x 1077
2Ne | 1.45200 x 107 | 1.01894 x 10™* | 1.75 | 5.29927 x 107 | 1.82
5.8088 x 10~° 2.904 x 107°

Table 4: ZAMS abundances (mass fractions) used in the Monash models for Z = 0.02, 0.008

and 0.004 (top numbers) and the equivalent solar-scaled abundance (numbers
below).
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2 Low- and Intermediate-Mass Stars

pre-main sequence and main-sequence CNO processing converts >C and °O to ¥C and
1N, The exact amount of conversion depends sensitively on mass and metallicity. The
isotopic profiles through the star are complex and impossible to follow synthetically. As the
star evolves up the giant branch a deep surface convective envelope forms which dredges up
material from below reducing the surface ?C and '°0O and increasing the surface 3C and
YN. Figure 3 shows the hydrogen, helium and CNO abundances of a 1.25 M., Z = 0.02,
non-overshooting Eggleton model prior to first dredge-up and during the dredge-up. The
increase in surface “N and decrease in 2C is due to mixing of the CNO processed material
at M, ~ 0.4 M. Also apparent is that the change in surface abundance is sensitive to the
depth of the surface convection zone and convective overshooting.

A 4 Mg, Z = 0.02 star exists for the Monash, Eggleton (NOV) and Padova (OV and
NOV) group model sets and the changes in surface abundance during first dredge-up are
shown in table 5. Convective overshooting doubles the amount of He dredged-up, consis-
tent with overshooting at the base of the convection zone eating further into the helium
core than the non-overshooting models. The effect on the other isotopes is less obvious
but the Monash and Padova (NOV) models agree reasonably well. The Eggleton code
consistently overestimates the changes relative to the other codes, perhaps owing to its
different mixing scheme and perhaps the small number of isotopes considered. There are
some minor changes to Ne, Na and Mg, owing to NeNa and MgAl cycling, according to the
Monash models but these isotopes are not available for comparison from any other model
set.

Fortunately the effect of first dredge-up is quite sudden on stellar evolutionary timescales,
so can be fitted as an event rather than an ongoing process. Analytic fits to the changes

in surface abundance from the Monash models are given in appendix B1.

2.4 Second Dredge-Up

After core helium burning has finished the star again climbs the giant branch. Shell helium

burning begins, the helium exhausted core moves outward in mass and the surface con-
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Figure 3: Abundance vs mass co-ordinate M, inside a 1.25 My, Z = 0.02 star just before
and during first dredge-up.

‘ Isotope ‘ Monash ‘ Eggleton (NOV) ‘ Padova (OV) ‘ Padova (NOV) ‘
H —1.01 x 1072 | —228 x 1072 —2.6 x 1072 —1.2x 1072
1He 9.92 x 1073 2.28 x 102 2.6 x 1072 1.2 x 1072
20 | —1.07x10%| —146x10"3 | —-1.00x 1073 | —1.05 x 1073
13C 4.99 x 107° - 7.58 x 107° 6.58 x 107
14N 1.48 x 1073 2.09 x 1073 1.66 x 1073 1.48 x 1073
15N —2.19 x 1076 - —1.86x107% | —1.89 x 107
160) —3.31 x 1074 —7.0 x 10~* —6.7 x 10~* —4.0 x 107*
170 1.36 x 107 - 1.12 x 107° 1.75 x 107
180 | =5.71 x 1076 - —43x107% | —49x10°¢
YR | —1.99 x 10~8 - - -
20Ne | —1.16 x 1077 0 - -
2INe 1.29 x 10~7 - - -
2Ne | —1.53 x 107° - - -

ZNa 1.59 x 107 - - -

Table 5: Surface abundance changes at first dredge-up for a 4 My, Z = 0.02 star.
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2 Low- and Intermediate-Mass Stars
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Figure 4: Second dredge-up in a 5 My, Z = 0.02 Eggleton model star. As the He-exhausted
core (green line) grows the surface convection zone eats into and shrinks the
H-exhausted core (red line). The hydrogen-burned matter between 0.83 and
1.01 Mg (blue lines) is mixed into the convective envelope, altering surface abun-
dances.

vection zone moves inward, eating into previously hydrogen-burned material (see figure 4).
The products of hydrogen burning are mixed to the surface in the process known as second
dredge-up. Stars with mass greater about about 4 M, experience significant changes in

surface abundance at second dredge-up.

Table 6 compares the surface abundance changes during second dredge-up from the
various model sets. Again the amount of convective overshooting is important, with the
Padova overshooting models mixing more processed material to the surface. The non-
overshooting models give similar results, with the Monash model changes generally lying
between the Eggleton and Padova models. All the CNO isotopes except N and O drop
as a result of CNO processing, 2°Ne and ??Ne drop at the expense of 2!Ne and ?*Na owing
to NeNa cycling, Mg is destroyed in the MgAl cycle while 26Mg is created. 2*Mg and Al

barely change, nor do heavier isotopes.

As with first dredge-up, second dredge-up is a relatively quick process so is modelled
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2.4 Second Dredge-Up

‘ Isotope ‘ Monash ‘ Eggleton (NOV) ‘ Padova (OV) ‘ Padova (NOV) ‘
'H —3.13 x 1072 —3.26 x 1072 —4.50 x 1072 —2.40 x 10
‘He 3.13 x 1072 3.27 x 1072 4.60 x 1072 2.40 x 1072
2¢ | —117x107* | —1.40x107* | —1.90x 107* | —1.10 x 10~*
13C —2.45 x 1076 - —3.00 x 1076 0
14N 4.50 x 1074 5.40 x 1074 7.20 x 1074 4.00 x 1074
15N —1.31 x 1077 - —1.80 x 1077 | —1.20 x 1077
60 | =356 x107* | —450x 107* | =5.70 x 107* | —3.10 x 104
170 4.31 x 1077 - 7.00 x 1077 9.00 x 1077
180 —1.00 x 1076 - —1.40x 107% | —8.00 x 1077
DR —2.31 x 1078 - - -
20Ne —7.28 x 1077 0 - -
2INe 7.70 x 1077 - - -
22Ne —7.25 x 1076 - - -
2Na 7.57 x 1076 - - -

HMg 2.30 x 1079 0 - -
BMg | —2.69 x 1076 - - -
Mg | 2.75x 1076 - - -
A1 2.93 x 1078 - - -
2TAl 2.23 x 1078 - - -
Table 6: Surface abundance changes during second dredge-up for a 5 My, Z = 0.02 model.
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2 Low- and Intermediate-Mass Stars

as an instantaneous event which occurs at the start of the TPAGB. Analytic fits to the

changes in surface abundance from the Monash models are given in appendix B2.

2.5 TPAGB Evolution

In order to synthetically model the Monash TPAGB model nucleosynthesis it is also nec-
essary to model the stellar evolution: core mass, radius, luminosity etc. The prescription
used in the SSE model, based on Eggleton models with convective overshooting and a
larger timestep, is significantly different from the Monash models. The state of the star at
the beginning of the TPAGB is known from the fit to the core mass at the first thermal
pulse. The star is evolved forward in time pulse by pulse (see figure 5). Between pulses
the star loses mass at a rate M from the envelope in a wind. The core grows owing to
hydrogen burning and the envelope material may experience hot-bottom burning. At every
timestep, usually coincident with a thermal pulse, the HBB algorithm is activated. If the
time since the previous pulse exceeds the interpulse period this is immediately followed
by third dredge-up. The change in core mass owing to nuclear burning and dredge-up
combined with the effect of wind loss determines the time evolution of the star.

The fit for the core mass at the first thermal pulse, M. ;Tp, valid for the range 0.004 <
Z <0.02 and 1 < Mypp/Mg < 6, , where Mjrp is the stellar mass at the first thermal

pulse, is taken from K02

M.irp/Me = fir(—arr(Myrp /Mg — 517)2 +c17) +

(1 = fir)(dirMyre /Mg + e17) (17)
where
MiTp/Me =917
fir = (1 +e ) (18)
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Figure 5: Time evolution of the synthetic AGB model (A > 0, not to scale). During the

interpulse period 7, the hydrogen-free core M, (Intershell + CO Core) grows by
A My and the envelope loses mass MTip. At the end of the interpulse period the
envelope is burned using the HBB algorithm and then a He-shell flash occurs
causing AMgredge = AMA My of material from the intershell region to mix with the
convective envelope. The new interpulse period Ti/p is calculated and the evolution
continued. The CO core is shown here but is considered to have the same mass
as the hydrogen-free core.
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2 Low- and Intermediate-Mass Stars

is metallicity dependent and is interpolated from the tables in K02 (see appendix B3). Upon
extrapolation this function is well behaved for 0.02 < Z < 0.03. Below M = 1M the
relation flattens off so there is little mass dependence upon extrapolation, above M = 6 M,
the relation is linear and is assumed to be correct — there is no way to test it. K02 find
little change in M, ;rp whether mass loss is included or not because the M. rp(M;) curve
flattens off at low mass so GB mass loss is not important.

In order to evolve the star forward in time the interpulse period, luminosity and radius
are required as functions of M, M. and Z. A direct fit to the time, ¢, is avoided so the
mass-loss rate can be varied and the code used for binary stars. For some of the fits
M nodup, the core mass as it would be in the absence of third dredge-up, is used. It is
defined by

t dM,
M. nodup(t) = Me1Tp + max (0, WC

tiTp

)dt, (19)

where ¢;7p is the time of the first thermal pulse. The use of M. noqup allows effects of an
increase in degeneracy in the core during core growth to be taken into account.

The change in core mass is defined by

AM. = M. — Mcrp (20)

and the change in core mass without third dredge-up

A]\4(:,n0dup — {Vl¢,nodup — Mc,lTP . (21)

The interpulse period 7, is based on the formula in Wagenhuber & Groenewegen (1998)
but modified to fit the Monash models (Pols, private communication) and includes a de-

pendence on the dredge-up parameter A\ (see section 2.6)

log,o(Tip/yr) = A (M /Mg — byg) — 102 — 10922 4 0.15)2, (22)

where ¢ys and day are taken directly from Wagenhuber & Groenewegen (1998), « is the
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2.5 TPAGB FEvolution

mixing length parameter (o« = 1.75 for the Monash models) and ¢ = log;,(Z/0.02). The

coefficients are given in appendix B3.

For low-mass stars the peak luminosity at each pulse (after the first few thermal pulses)
follows a linear core-mass-luminosity relation (CMLR, Paczynski, 1970). For intermediate-

mass stars (M; = 3.5Mg) this relation fails because of hot-bottom burning (Blocker &

~

Schonberner, 1991; Marigo et al., 1999; see also section 2.7). The peak luminosity is fitted
as a sum of the core-mass luminosity Lcypr and a term owing to HBB in the envelope,

Leny , such that

L = fa(fiLemir + Leny) Lo - (23)

The CMLR is given by a quadratic in M, for high initial core masses otherwise a linear

form is more suitable. If M. 1p > 0.58

Layvor = 3.7311 x 10* x
max (M. /Mg — 0.52629)(2.7812 — M. /M),
1.2(M, /Mg — 0.48)] (24)

otherwise

Lear = max [4(18160 + 3980.2) x (M, — 0.4468) — 4000, 10] . (25)

No fit exists for M. < M. 1p so the above expression is used for M, > 0.4468 otherwise

the expression from H02 is used 2.

The envelope luminosity is given by

2Stars with such a low core mass can only form in binary systems.
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2 Low- and Intermediate-Mass Stars

Figure 6: Luminosity vs core mass during the TPAGB phase for Z = 0.02 (left), 0.008
(centre) and 0.004 (right). The grey points are the Monash full stellar evolution
models, the black points are the synthetic models with the same initial masses.
The full stellar evolution models include post-flash dips while the synthetic mod-
els do not. Models with core masses above about 0.8 M show HBB.

A
Leny = 1.50 % 104(Menv/M@>2 X |:1 + 075(1 — m)]

1 2
max [(MC/M@ + iAMc,nodup/MQ - 075) 70] ) (26)

where Me,, = M — M, with a turn-on factor for the first few pulses

AA4cnodup 02
—_— 1.0] . 27
( 0.04 ) 1.0 27)

The short-timescale changes in luminosity which occur during the thermal pulse cycle are

fi = min

not modelled except to calibrate dredge-up, see section 2.6. However, it is necessary to

correct for these to obtain an accurate evolution algorithm. This is done with the factor

fa given by

fa=1—10.2180 exp [-11.613(M, /M — 0.56189)] . (28)

Figure 6 shows the luminosity for the Monash full stellar evolution and synthetic models

VS core mass.
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2.5 TPAGB FEvolution

R/R

Figure 7: As figure 6 but for radius.

The radius R is defined by L = 4noR*T; where o is the Stefan-Boltzmann constant
and Tyg is the effective temperature of the star, defined to be the mass shell where the gas
temperature equals Tog. The fit takes the basic form log R &~ Alog L with a correction for

envelope mass loss

loglo(R/RQ) =ag + by 109;10(L/L®)+029 1Oglo(]\/-[env/]V[env,lTP) : (29)

The coefficients asg, bog and cog are extrapolated from table B5. As M., tends to zero this
radius diverges so it is capped at 103 Ro. The BSE model also truncates the stellar radius
as Mo, becomes small to allow a smooth transition to the WD cooling track on the HR
diagram (see appendix B5). Figure 7 shows the radius, without small envelope corrections,

vs core mass from the Monash models and synthetic models.

Between pulses the hydrogen-deficient core grows owing to hydrogen burning. The lu-
minosity is due mainly to this and so can be used to calculate the change in core mass

during any timestep

AM, = min(L, Lyax)Q0t, (30)

where L is the luminosity, 6t is the timestep and () is the effective nuclear burning efficiency.
The cap at Lyax = 3.0 x 10* L, is introduced because an increase in core size beyond this

rate is not seen in the Monash models (see figure 8, left panel). @ is set to
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2 Low- and Intermediate-Mass Stars

Q = 107"(2.72530 — 1.8629 X)) (31)

as fitted to the Monash models, see the right panel of figure 8. The fit is not so good for
models which experience HBB but these models undergo deep dredge-up so the net core

mass growth, and any associated error, is small.

To compare the synthetic model to the Monash models the same wind-loss prescription
is used (K02, section 2). Before the giant branch the mass-loss rate M is negligible. On
the giant branch the formula of Kudritzki & Reimers (1978) with n = 0.4 is used. On the
EAGB and TPAGB the mass-loss rate is according to Vassiliadis & Wood (1993, VW93),

without the correction for masses above 2.5 Mg, so

log,o(M /Mg yr') = —11.4 4 0.0125(P/d), (32)

where P is the Mira pulsation period given by

log,o(P/d) = —2.07 — 0.91log,,(M/Mg) + 1.941og,,(R/Re) - (33)

A typical mass-loss rate is then about 107" Mgyr~! for a 1.9My, Z = 0.008 star (a
typical carbon star mass, with L ~ 5 x 103Ls, R ~ 200R, and P =~ 200d) prior to
superwind. This is a little low compared to observations (e.g. Wallerstein & Knapp, 1998)
although higher-mass stars have significantly higher rates (e.g. M~4x1077 Mg yr—! for
M =6Mg, Z = 0.02) and as Wallerstein & Knapp (1998) point out it is more difficult to
observe AGB stars with low mass-loss rates so there is some observational bias. The radius

used in eq. (32) is that calculated in eq. (29) without the envelope correction of HO2.

On the TPAGB and for P > Py, the rate in eq. (32) is truncated (if necessary) to a

superwind given by

(34)
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Figure 8: Left panel: % vs [ for the Monash models with e > (. The black line is

dt

the fit used in the synthetic model. Right panel: aff, L

it X T = Q) vs surface

hydrogen abundance for the Monash models with dgfc > (, the black line is the
fit used in the synthetic model. Most of the model points below the synthetic fit
are stars undergoing HBB so the linear fit fails but the error on M, is small (see

text for details).
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where ¢ is the speed of light and vey, is the expansion velocity of the wind (VW93) given
by

Vexp = Min [(—13.5 4 0.056 Pyax/d), 15] kms™. (35)

The Monash models have P, = 500d and this is used in the standard synthetic model.
The superwind mass-loss rate is usually much greater than the rate given in eq. (32)
and leads to a quick end for the star and probably a planetary nebula. For the 1.9 M,
Z = 0.008 star a typical superwind mass-loss rate is about 107° Mg yr~! which agrees

reasonably with observations (Wallerstein & Knapp, 1998).

2.6 Third Dredge-Up

The efficiency of third dredge-up is parameterized by

A\ — A]\4d1redg;e
AMy

(36)
where AMgyedge is the mass dredged up from the intershell region and AMy is the core mass
increase owing to hydrogen burning during the previous interpulse period (see figure 5)
so that over a whole interpulse period the core grows by AM. = AMy — AMiredge =
(1 — A\)AMy. The fitting of A to M and Z is an approximation to the true, and unknown,
form which would depend on M., Meny, Z and perhaps M. nodup-

The dredged-up material is instantaneously mixed with the convective envelope of the
star. There is a possibility of a degenerate thermal pulse in some stars (Frost, Lattanzio &
Wood, 1998). However the effect is to increase the amount of '2C dredged-up by a factor
of 4 so one degenerate pulse is equivalent to about four normal pulses. Frost et al. (1998)
report degenerate thermal pulses in a 5 M, Z = 0.004 star which would also undergo many
dozens of non-degenerate third dredge-up events, so the effect of one or two degenerate

pulses is small compared to the effect of non-degenerate pulses and such pulses are not

modelled with the synthetic model.
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2.6 Third Dredge-Up

K02 find third dredge-up for stars above a certain core mass M™® a function of M;, Z
and Mgy, where Mgq, is the mass above which second dredge-up occurs (Mg, ~ 4 M, for
Z = 0.02 and Mg, = 3.5Mg for Z = 0.004). For M < Mg, the minimum core mass is
given by K02

Mcmin*/M@ = agr + bg7M/M® + 037(M/M®)2 -+ d37(M/M®)3 . (37)

For M > Mg, —0.5 Mg, K02 find M™" > 0.7 Mg, so M™" = M. ;rp. Equation (37) diverges
as M increases and so is capped at 0.7 Ms. A correction is subtracted for Z < 0.004 to

force dredge-up in the low-metallicity models
AMy; = —205.17 4 0.8205. (38)

Finally the above prescriptions are combined so M™™ is given by

MM = max [Mrp, min(0.7 Mg, M"™ — AM;7)] . (39)

The use of M rather than M, is consistent with K02 but allows a reduced envelope mass
to reduce . Below Mé“in, A= 0. For M, > Méni“, A reaches an asymptotic value A\ N;.
Amax 18 fitted with

P + byoM /Mg + ca0(M/Mpg)?
max 1 + d40<M/ M®)3 Y

(40)

with a4 . ..dy0 functions of metallicity (K02, see also appendix B3). For M > 3.0 Mg,
A reaches a value of 0.8 — 0.9 with a slight metallicity dependence. At low metallicity
dredge-up is efficient at low mass so for Z < 0.004 eq. (40) is used with M artificially
increased by an amount 60 x (0.004 — 7).

The dependence on pulse number since M, > M™® N is approximated by

AN) = Amax (1 — eXp_N/Nr) . (41)
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Figure 9: Left panel: Temperature at the base of the convective envelope at the first ther-

mal pulse from the Monash models at various metallicities. Right panel: M™®
from the Monash models (K02) and the model of Marigo et al. (1999). The solid
line shows the core mass at the first thermal pulse in the Monash models.

Table 5 of K02 lists appropriate values for N, but there is no systematic variation that is

easily fitted with a simple function. The fit is

M o 2
Nr = (a42 -+ b42Z) X exp (M> —+

(642 + f4QZ) X exp (Wm;l—_gm> . (42)

Figure 9 (left panel) shows the temperature at the base of the convective envelope at

the first pulse from the Monash models. Note that use of the Marigo, Girardi & Bressan

(1999) prescription for dredge-up above log,;, Tice = 6.4 would lead to dredge-up in all

the Monash stars. Also in figure 9 is a comparison of K02’s M™" with Marigo et al.’s

prescription (with log,, Thee = 6.4) for solar metallicity. Even allowing for calibration of

the models by comparison to carbon star luminosity functions the Monash models still

have a slightly higher MM,

The intershell abundances are a mixture of hydrogen-burned material which is then
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2.6 Third Dredge-Up

mixed into the intershell region and processed through helium burning. The abundances
in the intershell region X' are fitted to data taken from the final thermal pulse of the
Monash models with 0.004 < Z < 0.02 (Karakas, private communication). Coefficients are
given in appendix B4.

Apart from “He, most of the intershell is 12C and the abundance is fitted to M and Z,

Xbio = a3+ (baz + ca3Z2)M + (daz + eszZ)M? +

(f13 + 913 Z)M? (43)

and further o capture leads to 1°O

XiOlG = Q44+ (b44 + C44Z)]\4 + (d44 + 644Z)M2 +

(faa + guZ)M?. (44)

All CNO in the hydrogen shell is converted to N in the hydrogen burning shell so

Xic13 = X1i\I13 = Xli\115 = Xé)w = XiOl? = XiOlS =0. (45)

Some YF, Ne and ?'Ne remain

i (M + ca6 + d46Z)2)
Xtio = (aug +bagZ) X exp | — ’ 46
r19 = (a6 167 ) P( (exs + f162) (46)

: Z(ayr + by M M <22M
X0 = 5.03 (a7 + baz M) o) (47)

ﬁ(cﬂ + dyr M + e M?) M > 2.2M,

and 9
i 0.02\" M + cag + dus logyy Z)?
Xe21 = X21 (7) (a48+b48 exp {_( 48 : 48 10Z1 ) }) (48)
48

where x2; = Z2/0.02 for M > 4 My, x21 = 1 otherwise.
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2 Low- and Intermediate-Mass Stars

This is then converted to ?2Ne by double-ar capture in the helium burning shell prior to

dredge-up. There is also some further processing of 22Ne to ?*Mg, Mg and *®Mg. The

fits are

492 + byg M + (dyg + €492 ) X

i _ (M + fa9+g492)?
e T ==

(Jag + kaoM) X (1 + 149 Z) M > 4M,

Xli\Ia,23 = a0+ (bso + c50Z) X M + (dso + €502) X

(4 fs0 + 9502)2]
hso ’

exp [—

[1 o 1/(1 + 6Lr{_]\/lf-l—fm-|—951Z) ’

Xliv[g% = max (0, asy + bsaM + c5o M2 + e5yM log,y Z)

Xliwg% = as3 + b53M + C53 10g10 Z X Md53 ,

i _ i _
XNaQQ - XA126 - O’

Cs5
14 0.1M+dss+ess 2 )

Xljo7r = a5 + bss logyg Z +

M < 4 Mg

(49)

(50)

(51)

(52)

(53)

(54)

(55)

Heavy s-process isotopes are fitted in section 2.11 below. All other isotopes heavier than

2TAl are set to their envelope abundances. The remaining material in the intershell is

assumed to be *He. The above fits give typical intershell abundances, for a solar metallicity,

5 M model, of 74% *He, 23% '2C, 0.5% °0O and 2% *2Ne.

There is some debate on the exact composition in the intershell region. The inclusion
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2.6 Third Dredge-Up

of overshooting (Herwig, 2000) seems to increase the abundance of '*C and 'O at the
expense of *He while other authors (Marigo et al., 2003) suggest little or no 2C and O
in the intershell. The Monash models do not obtain high values of intershell 10 such as

the 2% reported by Boothroyd & Sackmann (1988).

Groenewegen & de Jong (1993) include nuclear burning of third dredge-up material (their
eq. 35) as well as envelope burning (section 2.7 below). The reason for this is that material
brought up by third dredge-up is preferentially exposed to high temperatures at the base
of the convective envelope. The Monash models do not show this phenomenon though, in
the low metallicity models, there is dredge-up of *C and *N that leads to a similar effect
which cannot possibly result from helium burning. These isotopes are enhanced in the
envelope by dredge-up of material previously in the hydrogen burning shell but not mixed

into the intershell convective zone.

To account for this a fraction fouyp of AMgreqee is burnt for a fraction of the interpulse
period fyumpup and at the temperature and density at the base of the envelope extrap-
olated from eqs. 61 and 65. The hydrogen abundance of the material to be burned is
set to the envelope hydrogen abundance even though it may be somewhat lower owing to
interpulse hydrogen shell burning. Because fpup and fuum pup are fitted to the full evo-
lution models any problems are circumvented by the calibration. The burning algorithm
is that used for HBB. The hydrogen-burned material is immediately mixed with both the
helium-burned intershell material and the whole convective envelope to give the post third

dredge-up envelope abundances.

Note that when normal HBB occurs it is the dominant burning mechanism. At metal-
licity greater than 0.004 the change of '3C and N in the envelope owing to the dredge-up
of the H-burning-shell is negligible compared to the abundance of 1*C and N already in
the envelope. The model used here is only approximate and does not reflect the actual

hydrogen burning process — improvement requires more low-Z detailed models.
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2 Low- and Intermediate-Mass Stars

2.7 Hot-Bottom Burning

If the hydrogen envelope of an AGB star is sufficiently massive, the hydrogen burning shell
can extend into the convective region, a process known as hot-bottom burning (HBB).
HBB is dealt with in the synthetic code by burning a fraction of the convective envelope
fuss for a fraction of the interpulse period fi,, at the temperature and density as fitted
below. The burned fraction is mixed with the rest of the convective envelope at the end
of the timestep. Any dependence of HBB on mixing length should be small because the

envelope is assumed to be fully mixed.

Between pulses the convective envelope of an AGB star turns over many thousands of
times. It is impossible to model this using little CPU time because the burn — mix —
burn — mix ... process is computationally expensive. Given the uncertainties involved in
convective mixing and local mixing at the base of the envelope, it is simpler and preferable
to approximate the burning many times of a thin HBB layer at the base of the convective

envelope with a single burning of a larger portion of the envelope.

This can be justified by considering the size of the HBB region. For a 5Mg
star dlog;o(T/K)/dm at the base of the envelope is typically 3 x 10 M;'. HBB ceases at
log,o(T/K) ~ 7.6 and the temperature at the base of the envelope is log,,(7'/K) ~ 8. So
AMypg ~ 10~* M. This is much smaller than the size of the convective envelope (about

4 M, for a 5 M, star), so the HBB shell can be considered as thin.

When the thin HBB shell is burned and then mixed into the envelope the abundances in
the envelope are essentially unchanged. Only once a significant number of mixing events
(of the order Me,, /A Myugg) have occurred will the envelope abundances change noticeably,
so in this approximation a fraction of the envelope, fugpg, is burned for a fraction of the
interpulse period time fy,,. Fits are then made for fggp and fium to the Monash models.
In reality, some parts of the envelope burn more than once but this is absorbed into the
calibration of fypg. The following argument justifies this approximation. Figure 10 shows
a schematic of the envelope of a hot bottom burning star. At time 0 the abundances in

the envelope are X, after a convective turnover time 7. the abundances in the envelope
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2.7 Hot-Bottom Burning

are converted by radioactive decay to aXy and the HBB layer to a3X, where 3 is due to
HBB alone?®. The envelope then mixes and the process is repeated. After one mixing the
envelope abundances are given by

aXo(Meny — Mugg) + aBMupsXo

e Mo 0

and after N, pulses, where N, = 7,/7 is the number of convective mixing events during

an interpulse period,

M e
Xy, = Xo |+ L (af —a)| . (57)
Menv
which can be rewritten using a binomial expansion as
Xy, = Xoa™ [1 + fups(8 — 1)] = Xoa™ [(1 — fugs) + fups] (58)
where
M,
Jupp = NCTZfVB (59)

under the assumption that the burning layer is thin (Mypp < Meny) and that a and 8 do
not vary significantly during the interpulse phase. Radioactive decay is dealt with by the
term a’°, the unburned material by (1 — fgpp) and the multiple burnings of the thin shell
by fuseB. The HBB shell mass fggg and burn time f},,,, necessary to calculate 3 still have
to be calibrated to the full evolution models but as long as the shell is thin this is justified.
The radioactive decay term becomes exp —N.7./Traqa Where Tp,q is the radioactive decay
timescale. From the definition of IV, this becomes exp —7i,/7raa S0 knowledge of N is not
required. If a or 3 changes rapidly with time (this occurs when the nuclear timescale is
similar to the convective timescale) the situation is more complex and a simple expression
cannot be formulated. For this reason it is impossible to burn isotopes such as "Li or *Be

with this technique.

3Both o and 3 are matrices because they vary from isotope to isotope.
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MiX MiX MiX

Time

Figure 10: Synthetic convective mixing approximation: the region at the base of the enve-
lope burns isotopes X to BX while radioactive decay in the envelope converts
abundances X to aX.
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2.7 Hot-Bottom Burning

The temperature at the base of the convective envelope T} is the critical factor which
governs the rate of hot-bottom burning. If the temperature is sufficiently high (Thee >
TuBBmin ~ 1075 K) it is possible that hydrogen burning occurs in the convective envelope
of the star altering the surface abundances. From the Monash models it is seen that
the temperature rises quickly in these hot-bottom envelopes and then stays at a roughly
constant value until the envelope mass becomes small. In order to model the HBB a fit to
the temperature in the burning zone is needed.

The base of the convective envelope is defined as the innermost point in the envelope
at which the Schwarzschild condition for stability is no longer satisfied. The rise at the
beginning of the AGB and the fall owing to envelope mass reduction at the end of the AGB
are extremely difficult to parameterize, so the maximum temperature over the lifetime of
the star is fitted and modulated for the rise and fall. The logarithm of the temperature is
then given by

loglo(Tbce/K) - loglo(Tmax)fTrisederop ; (60)

where Thhax, frvise and frarop are defined below.

The logarithm of the temperature maximum is fitted to

loglo(Tmax/K) - mln(60379 + a61Menv,0/M® + B(g, MC,lTP)7 795) ) (61)

where ag; is a constant and

B((, Meatp) = (a2 + b2l + co2) X (14 deoMeare/ Mo + ea(Meimp/ Ma)?)
(62)
where ags . .. eg2 are constants. The maximum value of 7.95 was a limitation of the HBB

code at the time it was calibrated*. Temperatures higher than this are only likely to be

“Above this temperature the burning algorithm became unstable, e.g. see figure C8 with fr = 1.02,
possibly due to the roots of the quadratic eigenvalue equation being complex. The problem is not
repeatable with the latest version of the code although it is not known why.
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2 Low- and Intermediate-Mass Stars

encountered in the envelopes of the lowest metallicity and highest-mass stars for which
there are few Monash models available for calibration.

The rise in temperature during the first few thermal pulses is modelled by a factor

N-
fTrise = 1.0 —exp <_N::;) ) (63)

where Nrp is the thermal pulse number and Ny is a rather arbitrary constant, of the
order of 1 for M; ~ 6 My, a few for M; ~ 5M,, about 20 for M; ~ 4 M. and possibly
infinite for M; < 3.5 Mg. No HBB occurs in the latter stars, at least for Z > 0.004, and
the Thhax < TusB,min condition also prevents HBB.

The drop in temperature owing to the decrease in envelope mass is taken care of by

M., Bea
derop - (7) s (64)

Meny,1irp
where (g4 is another free parameter which is quite uncertain, especially for the high-mass
stars, for which there is no data when My, < 1.0My. Fortunately M,,, falls quickly
during the superwind phase near the end of the AGB so the uncertainty does not matter
too much. A constant value (g4 = 0.02 is used and this works well for most stars.
The density p at the base of the convective envelope is not as important for nucleosynthe-
sis as the temperature but a reasonable value is required. The logarithm of the maximum

density over the star’s TPAGB evolution as a function of M, and Z is fitted by

log1 pmax = @65 + 665(Mf%5P/M®) + de5C - (65)

This function is modulated by frise and Meny/Meny o to give

Meny

. 66
Menv,lTP ( )

P = pmaxf Trise

This is a reasonable fit for M;rp > 3 My and models with M;tp < 3 Mg do not experience
HBB.

The free parameters,
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2.8 Rapid CNO burning

e fugp - the fraction of the star’s envelope that is burned in the HBB shell,
® fourm - the fraction of the interpulse period for which the HBB shell burns,

e fpup - the fraction of the dredged-up material which is burned before being mixed

into the envelope,

® fpbupbum - the fraction of the interpulse period for which the dredged-up material is

burned and

e N - the factor used to define how quickly the HBB temperature reaches T;,.x

are calibrated to the surface abundance vs time profiles of Monash models for '2C, 13C, 4N
and 0. Appendix C contains details of the calibration method, fits to the free parameters

and a brief sensitivity study.

2.8 Rapid CNO burning

The CNO elements are burned according to Clayton’s CNO bi-cycle (Clayton, 1983). He
claims this is accurate to 1% for the temperature range considered (log,, T/K < 8) and this
was confirmed by Groenewegen & de Jong (1993) who used a similar approach. This tech-
nique is much faster than solving the differential equations of a complete nuclear reaction
network.

The CNO cycle can be simplified from the full set of differential equations (see table 7 )
if 13N, 15N, 150 and '"F are in equilibrium. The cycle then splits into two at N(p,~)'¢O,
the CN cycle and the ON cycle, with branching ratios acy = 1 — apnx and aon >~ 7 X
10~* respectively (Angulo et al., 1999). The small value of aox reflects the fact that the
timescales in the ON cycle are many thousands of times those required to bring the CN
cycle into equilibrium so the cycles can be treated separately.

The CN cycle equations, with acy = 1, become
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2 Low- and Intermediate-Mass Stars

i Reaction T/s Cycle

12 2C4+'H -=¥N+~ | NACRE CN
138 | BN =BC+et +v 597.54 Equilibrium
13 | BC4+'H N+~ | NACRE ON

14 | UN4+'H %0+~ | NACRE| CN/ON

15 BN +'H —-2C+a | NACRE Equilibrium
N +!'H - O+~ | NACRE | CN/ON branch
153 | YO =PN+ef +v 122.2 Equilibrium

16 | %0 +'H —'"F+~ | NACRE ON
178 | Y'F ="O+et +v 64.78 Equilibrium
17 | O +'H —'"N +*He | NACRE ON
17v | "O+'H —-8F +~+ | NACRE ON
183 | BF =80 +et +v 0 Equilibrium

18 | 8O +'H —'>N +*He | NACRE Equilibrium

Table 7: Reactions used in the rapid CNO bi-cycle. The columns show the reaction number
used in the text ¢, the corresponding nuclear reaction, the reaction timescale
(NACRE indicates use of the analytic fit to the cross section from Angulo et al.,
1999, beta-decay timescales are from Tuli, 2000) and synthetic cycle used.

120 —]_/7'12 0 ]_/7'14 120

d

@ 13C - 1/7’12 —1/7’13 0 13C (67)
14N 0 1/7’13 —1/7’14 14N

which is of the form %U = AU. Eigenvalues \; are given by AU = \;U and U is a linear

combination of the eigenvectors Uj, so

U(t) = AeMU; + Be*'Uy + Ce™'Us. (68)

The timescales 7; for the proton-capture reactions are defined by

7 = ({ov); Nmy) ™" (69)

where (ov), is the velocity averaged cross section for the appropriate reaction i . The rate
of change of each isotope (eq. 67) is proportional to the cross section, the hydrogen density

and the isotope density.
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2.8 Rapid CNO burning

The method of solution for eq. (67) is found in Clayton (1983). The timestep ot is
substituted for ¢ in eq. (68) to calculate the abundances at the end of the current timestep.

The ON cycle equations are identical to the CN cycle, with '2C, 13C and '*N replaced by
1N, 10 and 170 and with appropriate 7; (see Clayton, 1983 and table 7). The amount of
70O converted to 180 (via F) is too small to affect the surface abundance of 7O and the
associated ON cycle so is ignored. Similarly, because the ¥0 abundance is always small
feedback into the CN cycle via N is also ignored. The minor species *N, N, 150, 80

and '"F are then assumed to be in equilibrium such that

-
Nyis = Nejp 22 ; (70)
T12
N, N
Nxis = 715 ( oL + ﬂ) ; (71)
Tp15 T18
T
Nops = Ny =22 ; (72)
T14
-
Npir = Noir—220 (73)
T16
and
N, 1 1\
Noig = ol ( + ) . (74)
Ti7y  \TO18 TO18y

For short burning times (0t < 715) only the CN part of the cycle is necessary. For longer
times, the CN cycle is burned to equilibrium before the ON cycle is activated. Even in the
most massive AGB stars undergoing vigorous HBB, X6 does not change much so the ON
cycle never approaches equilibrium. Nuclear reaction rates are taken from the formulae in
the NACRE compilation (Angulo et al., 1999) except the beta decay constants which are
taken from compilation of Tuli (2000). The rates compare well to table 5.3 (page 393) of
Clayton (1983).

Figures 11 to 18 show the synthetic models compared to the Monash models for stars
which experience HBB (M > 3.5My) for 'H, *He, CNO and '"F. The agreement is

excellent for the major elements and the qualitative behaviour is correct for the others. In
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2 Low- and Intermediate-Mass Stars

cases where the synthetic and Monash models differ the mass of the star can be varied a
little to obtain a better match so the effect on the yield from an integrated population of

stars owing to these minor deviations is small.

2.9 Rapid NeNa and YF burning

The NeNa cycle is given by

21N ), 22N,

(BT L (B")
21Na 22Ne
(p,7) 1 L (»7)

19F (pv’Y) QONe (pva) 23Na (pv’Y) MgAl

where the timescales for the reactions (eq. 69) are shown in figure 19. The cross sections
are taken from the NACRE compilation and the previously fitted Tjc. and ppce are used.

As it stands, this is a complicated problem. However, entry via F can be dealt with
explicitly and exit via 2*Mg can be neglected because MgAl cycling is of greater importance
(see section 2.10). The beta decays have lifetimes of 32s for ?'Na, so this is assumed to
decay instantly, and 3.74 yr for 22Na which is assumed to be in equilibrium. The remainder

of the cycle is

21N ), 2N
(p,y) 1 1 (p,7)

WNe Y 23Ny

and the differential equations become

Ne _ *Ne  *Na
dt a 720 T23 ’

d21N 20N 21N
[§] _ [§] _ e ’ (76)

dt T20 T21
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Figure 11: 'H, “He, '2C, 3C and N vs time (in units of 10°years) for the synthetic
models (red) and the Monash models (green) with M = 6 M.
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Figure 12: N, 160, 170, 80 and YF vs time (in units of 10°years) for the synthetic
models (red) and the Monash models (green) with M = 6 Mg,
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Figure 13: 'H, “He, '2C, 3C and N vs time (in units of 10°years) for the synthetic
models (red) and the Monash models (green) with M = 5 M.
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Figure 14: N, 160, 170, 80 and 'F vs time (in units of 10°years) for the synthetic
models (red) and the Monash models (green) with M = 5 M.

56



Xu1)

[

10919

10910(XHed)

log;0(Xc13)

XN14)

[

10919

-0.166

-0.168 ¢
-0.17 ¢
-0.172 ¢
-0.174 ¢
-0.176 ¢
-0.178 ¢

-0.18

-0.502

-0.504 ¢
-0.506 1
-0.508 ¢
-0.51
-0.512 ¢
-0.514 ¢
-0.516 ¢
-0.518 ¢

-0.52

-4.04
-4.045 ¢
-4.05 ¢
-4.055 ¢
-4.06 |
-4.065 1
-4.07

-2.595

26
-2.605 1
-261 ¢
-2.615 ¢

-2.62

-2.625 1

-2.63

ﬁ_‘_\_v‘—\—\;
T
e T

s

e

T
L

0 051 15 2 25 3 35 4 4

0 05 1 15 2 25 3 35 4 4.

0 05 1 15 2 25 3 35 4 4.

0 05 1 15 2 25 3 35 4 4.

-0.135

-0.14 ¢
-0.145 ¢
-0.15
-0.155

-0.16

5

-0.58
5
-2

22|
24|
26 |
28|

-3t
32t

-34
5
-3.5

36
37}
-38 |
39t

4t
41t
42}
43}
44 t
-4.5

-4.6
5
-31

311 ¢
-312
-313
-3.14 ¢
-315 ¢
-3.16
-3.17
-3.18

-3.19

5

2.9 Rapid NeNa and **F burning

Figure 15: 'H, “He, 2C, 3C and N vs time (in units of 10°years) for the synthetic
models (red) and the Monash models (green) with M = 4 M.
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Figure 19: The timescales for the various NeNa reactions as a function of temperature.

and

where the isotopes

matrix form as

-20Ne- ~

d | 2'Ne

dt 22Na B
23N,

d**Ne  *Ne **Na
dt a T21 T29

d*Na  *?Ne  *Na
dt a 722 T23

1
T20 0
1 1
720 —T21
0 1
T21
0 0

1 20Ne
723
0 2INe
0 22Ne
_ 1 23Na
T3 | L

This is an eigenvalue problem with solutions of the form

U(t) = A(]e)\otU(] + Z AieAitUZ’

i=1,2,3

(77)

(78)

represent the number densities. These equations can be written in
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where the eigenvalues are the solutions of

1 _ 0 0 1
720 723
L L 0 0
720 T21 — 0
0 L L 0
T21 T22
1 1
0 0 ™
which evaluates to
1 1 1 1 1
(—+ N (—F+N(—FN)(—+N)—-———=0.
T20 T21 T22 T23 T20T21T22723

With o = 1/799, 5 = 1/791, ¥ = 1/792 and 6 = 1/7o3 this can be simplified to

(a4+NB+NT+N0+N) =aByo

ie.
AN 4 ar? +bA +¢) =0
where
a=a+pf+y+4,
b=~0+4+ad+ [0+ ay+ By+ab
and

c=ay)+ By + afd + afby.

(80)

(81)

(82)

(83)

(84)

(85)

(86)

The first eigenvalue is the trivial solution A\g = 0. The eigenvector Uy is calculated from

the set of equations



2.9 Rapid NeNa and **F burning

—1 9 0 1
720 T23
L L 9 0
T20 ;’21 1 U, = [A] Uy=0 (87)
0 - - 0
1 1
00 5
which has the solution
T20
1 T:
U, = S (88)
Too + To1 + To2 + 723 | 1,
— 7—23 —
This can be rewritten by noting that
d
AU, = —-U,=0 &9
ATy = Sy (59)

so all the time derivatives are zero. This leads to the following equilibrium solution

20Ne 23Na

= , 90
T20 T23 ( )
20Ne B 21Na (91)
T20 721 ’
21Ne - 22Na (92)
T21 T22

and

22Ne B 23N g (93)
T22 T23 .

Substitution into Ug gives
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20Nee
1 ?'Ne, U.
: ]VNeNa QQPJee pVNeNa ( )
23PJae
where the subscript e refers to equilibrium and
Nxexa =>"Ne +2'Ne +*2Ne +% Na (95)

is the total (conserved) number density of NeNa cycle isotopes.

It now remains to identify the other eigenvalues A\;, Ay and A3. These are solutions of

the cubic equation

N HaX? + b\ +c=0, (96)

which can be calculated using the cubic formula. All three roots are usually real and in
the case where they are complex NeNa cycling is skipped for a timestep®. Given A\, A,

and A3 from above, substitution into the eigenvalue equation gives

— 1 1 .
—L 0 0 P
e
T20 T21 UZ — [A] UZ = )\ZUZ . (97)
0 S 0
T21 T22
1 1
L 0 0 T22 723

The solution is

This situation is rare but can occur at low metallicity and high mass — the reasons for the failure seem
to be numerical.
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Too(Ai + é)
1

1
T21()\i+%)

L 7—207—23<)\i —+ %)()\z -+ L) i

720

and the NeNa abundances as a function of time are calculated from

Ut) =U.+ Y AU, (99)

i=1,2,3
where the gory details of the solution for A; are in Appendix Al.

There are three reactions which can destroy F: F(p, 7)?*°Ne, F(p, @)'®0 and F(p, n)'"Ne.
At Ty = 0.08 they have reaction rates of 2.28 107, 8.13x 10~ " and less than 10722 cm® mol ' s~!
respectively (Angulo et al., 1999) so only the F(p, @)'0 reaction is necessary. The change

in 19F is calculated from

YF — ¢ /Mo VF, (100)

The corresponding change in 90 is neglected because the 10O abundance is about 1072
while the YF abundance is less than 10~7 so even if all the F is converted to O the

effect is small.

Figures 20 to 23 show the synthetic model with and without NeNa cycling compared to
the Monash models. Note that when the red lines are invisible they are hiding under the
green lines. The qualitative and in some cases the quantitative agreement is good. 2°Ne
is an exception. The reaction »Na(p, a)?°Ne is extremely sensitive to temperature in the
HBB regime, while ?°Ne(p, v)*'Na(37)?'Ne is not. The difference in timescales leads to
numerical errors which are as great as the change in ?°Ne seen in the detailed models owing
to HBB or DUP. As is usual with numerical errors the effect is quite random hence the
fluctuations in the ?°Ne yield as a function of mass. Also, as the temperature rises and the

Na(p, a)®Ne timescale becomes small it is comparable with the convective turnover time
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so the assumptions of the synthetic HBB model — thin shell, constant temperature and

density — are no longer valid and accurate synthetic burning proves difficult (in a similar

manner to Li and Be). Still, most **Ne is thought to come from high-mass stars and their

associated supernovae with only a small contribution from AGB stars so the worry is not

warranted. The abundance of ?2Na is also poorly matched, but given the short timescale for

decay of this isotope and its similarity to the convective turnover time again it is difficult

to do any better.

Despite these small problems the temporal behaviours of F, 2!Ne, ?2Ne and 23Na are

significantly improved with respect to the no-NeNa case and the equilibrium value for 22Na,

is a reasonable assumption.

2.10 Rapid MgAIl burning

The MgAl cycle is given by

(651
25A1
(P 1
23Na (,7) 24Mg (p,2)

26A1
L(B%)
26Mg

L (p,7)
27A1

with the appropriate timescales shown in figure 24.

Assumptions are required to proceed:

(p:7) 27Si

(P) 28 Si

e Entry into the MgAl cycle via 2Na is neglected for simplicity. This works well even

though the Na(p,v)?"Mg and **Na(p, a)*Ne cross sections are similar.

e The cycle is terminated at 2"Al because the timescale for conversion of 27Al to ?*Mg

or 2Si is long compared to the burning time. This is justified when looking at the

Monash models because the 2*Si abundance hardly changes.

66



1095 5(Xne20)

2.10 Rapid MgAl burning

6.5
iy 7=0.004
75 M=6.00M_
-8 1
-85 I
-9
95
-10

005115 2 25 3 35 4 45

5

-10.5
-3.1

-3.15
32
-3.25
33
-3.35
3.4
345 =
-35

0 05115 2 25 3 35 4 45

5

BN alisanyt
RN HRRERY d
RN ‘/,‘\..;‘\

-5
-55
-6

_75.

0 05115 2 25 3 35 4 45

5

5

-10 ‘1~ A i nmww“\m‘
i o -15 W“‘ o ‘i ““““ w‘- o
220 [l I|l||||l| :':I:l|l|l|l|\::||l u 20 ‘.:I:“ lltJ“llllllll M‘l\" /V{ ‘ 'l{ 20 NM::M l Q Qé« ” |||“| ‘:MI“I i
925 N" I'Hl'"ln‘ ; ':',':'iﬁfﬁ ,” HH ‘ \ n‘f M || i
P R 25 [ "“'\‘m‘h‘h‘\“m '|'u‘“l‘n"h » I ’M i
P 30 '!!!‘!!hn'!n!!mh!!nln‘l‘l‘l‘lhhl.l.l.n.uln..u ) AR ! f el
-40 -35 -35 :
0 0.5 1 15 2 25 0 05115 2 25 3 35 4 45 5 0 1 2 3 4 5
-35 -3.2 -3
-36 3.4 ;21
g'z'; '2‘2 36
23 -3. -38
S-3.9 4 4
-4.2
S 4 42 by

-4.6

Figure 20:

-4.8

19F 20Ne, 2!Ne, 22Ne, 2?Na and ?*Na vs time (in units of 10° years) for the 67

synthetic models with NeNa cycling (red), synthetic models without NeNa

cycling (green) and the Monash models (blue) M = 6 M.

Note that when

the red lines are invisible they are hiding under the green lines.
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cycling (green) and the Monash models (blue) M = 5 M.

the red lines are invisible they are hiding under the green lines.

Note that when




I 0910(XN 20)

~-4.21
Z-4.22
3-4.23
8 4
-4.25
-4.26

2.10 Rapid MgAl burning

-6.1
-6.2
-6.3
-6.4
-6.5
-6.6
-6.7
-6.8
-6.9

-7

-7.1

-3.43
-3.435
-3.44
-3.445
-3.45
-3.455
-3.46

0 051 15 2 25 3 35 4

-5.55

-5.6

-5.65

-55
-5.6
-5.7

0 051 15 2 25 3 35 4

-2.8

-3
-3.2
-34
-3.6
-3.8

4.4

0 051 15 2 25 3 35 4

e ==

LN
LI
l‘u u"'n n
[T Iy “\ iy
i l||I l|| ||

h
H ith H

iU

|I ||l
¥
‘\‘\m

0 05 1 15 2 25 3 35 4

0 05 1 15 2 25 3 35 4

Figure 22: 19F, 20Ne, 2!Ne, 22Ne, #2Na and 23Na vs time (in units of 107 years) for the 69
synthetic models with NeNa cycling (red), synthetic models without NeNa

cycling (green) and the Monash models (blue) M = 4 Mg,

Note that when

the red lines are invisible they are hiding under the green lines.




1095 5(Xne20)

10g10(Xna22)

2 Low- and Intermediate-Mass Stars

-5.9
-6
-6.1
-6.2
-6.3
-6.4
-6.5
-6.6 6.9
-6.7 o -7
-6.8 -71
0123454678 9100 o0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
-2.74 — -3.13 -343

5744 - -3.135 e -3.435

-6.1
-6.2
-6.3
-6.4
-6.5
-6.6
-6.7
-6.8

2.748 -3.14
-3.145

2.758 -3.155

2762 316
0123 4656 7 8 910

-5.54
-5.56
-5.58

-5.6
-5.62
-5.64
-5.66
-5.68

-5.7
-5.72

01 2 3 45 6 7 8 910
-3

32
-34
-36
-38

-4
4.2

il

-4.54

-41 -4.56 47
-4.58 ]
-4.15 461 4
462 | 48
-42 -4.64
456 -4.85
-4.25 -4.68 ]
+68 49
.43 -4.72 -4.95

01 2 3 456 7 8 910 o 1 2 3 4 5 6 7 o 1 2 3 4 5 6 7

70 Figure 23: 1YF, 2'Ne, 2!Ne, 22Ne, #2Na and 23Na vs time (in units of 10° years) for the
synthetic models with NeNa cycling (red), synthetic models without NeNa
cycling (green) and the Monash models (blue) M = 3.5 M. Note that when
the red lines are invisible they are hiding under the green lines.



2.10 Rapid MgAl burning

MgAI timescales

1e+07 — : , ,
Mg24(p,y)Al25
let06 |\ Mg25(p,y)AI26 —— ]
\ Al26(py)Si27 ——
100000 F Mg26(py)AI27 — ]
\ Al27(p,a)Mg24
10000 f Al27(py)Si28 ]
]
5 1000 | ]
>
100 f ]
10 ]
1E ~_ ]
0.1 L L L ' N
2e+07 4e+t07 6e+07 8e+t07 1e+08 1.2e+08 1.4e+08

T/K

Figure 24: The timescales for the various MgAl reactions as a function of temperature.

e The beta-decays of Al and %’Si are quick enough to be considered instantaneous

(1 = 10s and 6's respectively).

e The decay of 2°Al, with a timescale of about 7 x 10° yrs, must be included in the

chain.

The differential equation set to be solved is then

d24Mg o 241\/[g

101
dt T24 ’ ( )

d25M 25M 24M
6, 6 (102)

dt T25 To4
d26Al _ 25Mg B 26A1 B 26A1 N 25Mg B 26A1 (103)

dt Tos TB26 Toe! T25 Toe
where T3¢} + 756 = 756 ',

d26Mg - 26A1 261\/[g (104)

dt TBQG T26

and
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d27Al 26 Mg 26A1

dt T26 Tog!

0 (105)

where the isotopes represent number densities. The equations are each solved in turn
leading to a horrendous mess of algebra. Fortunately computers do not care about such
things. The method of solution is in appendix A2.

Figures 25 to 28 compare the synthetic model with and without the MgAl cycle and the
Monash models. Again, when there is little burning the green lines hide the red lines. The
agreement is good for most stars although again the temperature sensitivity of the cycle
is evident with the M = 6 My, Z = 0.008 star over-burning *Mg to ?Mg. This does not
affect the yield of a population too much because the agreement at Z = 0.02, Z = 0.004
and M = 5M, is excellent. The radioactive nucleus 26Al is followed accurately and the
change in 28Si is negligible. This justifies the use of 2"Al as the terminal link in the MgAl

chain.

2.11 The S-Process

The production of elements beyond iron is possible by slow neutron capture, known as the
s-process. The stellar conditions responsible for this are thought to occur in the intershell
region of AGB stars, where the reactions *C(a,n)'%0 and ?*Ne(a, n)*Mg provide the
neutrons. The '3C reaction activates at temperatures of 9 x 107 K but the ??Ne reaction
requires 7' > 3 x 10® K which occurs only in the most massive AGB stars. For the 13C source
to be activated protons must be mixed from the convective envelope into the hydrogen-free
intershell region. The physics of this process is still highly uncertain with suggestions that
semi-convective diffusion due to carbon recombination (Iben & Renzini, 1982), gravity wave
mixing (Denissenkov & Tout, 2003), convective overshooting (Herwig & Langer, 2001) or
stellar rotation (Herwig, Langer & Lugaro, 2003) may be important. For the purposes
of the synthetic model the details of convection zones, neutron poisons, mixing with s-

process material from previous pulses and the details of the neutron source are quietly
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2.11 The S-Process

swept under the proverbial carpet and only the composition of the s-process nuclei in the
material dredged-up is considered. It is assumed that a *C pocket does exist and its mass
(and hence the s-process neutron exposure) is treated as a free parameter together with
stellar mass and metallicity. The models used are taken from Gallino et al. (1998) and
Lugaro (private communication). Given the present uncertainties in s-process modelling
only elemental abundances are fitted, the isotopic distributions are not reliable enough to

be worth fitting.

Fortunately, the s-process abundances of the dredged-up material are quite simple to fit
once the fits for a few key elements are established. The heavy elements Ce, Dy, Er, Eu,
Gd, Hf, Hg, Lu, Nd, Os, Pr, Re, Sb, Sm, Sn, Ta, Th, Te, Tl, W, Xe and Yb are fitted to
Ba. The light elements Ag, Cd, In, Mo, Pd, Ru, Sr, Tc and Zr are fitted to Y. Rb and Kr
form a separate grouping as do Bi and Pb which are the heaviest elements formed by the
s-process. The models have masses M = 1.5, 3 and 5 M and data are taken from pulse
numbers 14, 21 and 28 respectively, where the pulse is chosen to be representative of the
asymptotic regime. A model of each star exists for Z = 0.02, 0.006, 0.002, 5 x 10~% and
10~%. The 3C pocket has mass 9.3 x 107 M, and is assumed to contain no *N. The 3C

efficiency ¢ is proportional to the abundance X7, of '3C in the pocket

¢ = XP,,/0.00382. (106)

The fits for intershell Y, Ba, Kr and Pb as functions of M;, Z and & are

Xb107 +0.1

10°X, = — 24 h ' o7 M 107
v = (a7 (x + 107597 + 107 f107)(9107€™ + Pao7€ + dr07) + Jror My, (107)

o anon-+[ o peron | is
10 XBa =10 xXTe108 108 | % flog(Z) X 9108(5) + thSM B (108)
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log;o Pb = a100X"* + c100€ + d100€2 + €100Z + fioo + grooMi +

hiog(logyo & + d109) % (10810 & + J109) X (10810 & + Fi09) (109)

then

108X1.13b — Pb x 10max[0,(a110+b110Mi)><(2710g10 Pb)] (110)

and

logy 10° X}, = arn +bin Mi+ e M7 +din log,(10°Z) +e111 [log10(103Z)}2+f111§+gnl§2
(111)
where y = 103Z/£. The remaining elements A are then fitted using a log-log fit

loglo A= a112 loglo B —+ b112 (112)

where B is one of Y, Ba, Pb or Kr. The fits are given in appendix B6 and comparison of

the fits to the FRANEC results are shown in fig. 29.

2.12 Radioactive Decay

Some isotopes produced in the above nuclear burning algorithms are radioactively unstable,
notably #2Na, Al and Tc. These are exponentially decayed at the end of each timestep
according to eq. (58) with e = exp(—dt/7) where 7, is the radioactive lifetime and §t the

timestep. Lifetimes are taken from the compilation of Tuli (2000).

2.13 Low- and Intermediate-Mass Stellar Remnants

The remnants of single low- and intermediate-mass stellar evolution are white dwarfs.

These come in three flavours which are modelled as follows.
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These are projections on M, Z and £.

79



2 Low- and Intermediate-Mass Stars

e Helium white dwarfs (HeWDs) are the cores of giant branch stars which have lost
their envelopes. All hydrogen is converted to helium so the mass fraction of helium is

1 — Z. Helium white dwarfs are more likely to occur as a result of binary evolution.

e Carbon-oxygen white dwarfs (COWDs) are formed by helium burning. These are
assumed to be, apart from metals heavier than F which remain unchanged, 80%
120 and 20% '90. The hydrogen, helium, other CNO isotopes and fluorine are set to

zero abundance.

e Oxygen-neon white dwarfs (ONeWDs) form from the most massive AGB cores. The
temperature in these cores is high enough that carbon ignites in semi-degenerate
conditions (Pols et al., 1998). These are modelled as 80% 6O and 20% *’Ne, while
everything heavier is unchanged and the hydrogen, helium, CNO and fluorine are
zero. By definition of an intermediate-mass star these stars do not exceed a mass of

Mey, — if they did a supernova would occur owing to electron capture on **Mg.

No attempt is made to include detailed WD evolution or abundances in this model. This
is because WDs are not directly important for nucleosynthesis, except type Ia supernovae
and novae. The yields for these explosions are fitted to the results of detailed models so,
while the fitted yields depend on whether the progenitor is a He-, CO- or ONe-WD, they
do not depend on the stellar abundances. It is also difficult to remove matter from the
surface of a WD in any other way. They are not considered to have a wind and even if
they did it is likely that the surface layer of the WD is lost first. The surface layer contains
hydrogen, helium and other light elements from the remnant star or a companion. Such

objects require more detailed modelling than is available in a synthetic model.

2.14 Carbon Star Luminosity Functions

The Carbon Star Luminosity Function (CSLF) is defined as the number of carbon stars

per unit bolometric magnitude for a particular population i.e. it is a probability density
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Figure 30: Left panel: the solid line is the core mass at the first thermal pulse and the
dashed line is M™" both from Karakas et al. (2002) for Z = 0.02. The dot-
dash lines, from top to bottom, are for AM™® = (0, —0.025, —0.05, —0.075 and
—0.1. Right panel: the solid line is Apax from Karakas et al. (2002) for Z = 0.02,
the dashed lines are for A\, = 0.3, 0.5 and 0.7.
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Figure 31: The best fit synthetic model carbon star luminosity functions for the LMC
(Z = 0.008, left panel) and the SMC (Z = 0.004, right panel). Observations
are from Groenewegen, 2002.
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2 Low- and Intermediate-Mass Stars

function. It is a common diagnostic used to check and possibly calibrate third dredge-up.
Carbon star surveys of the Magellanic Clouds are thought to be complete because these
stars are bright, albeit in the infra-red owing to dust, and carbon stars are easy to identify
by spectrographic and photometric methods. A population of stars is modelled in the mass
range 0.5 < M;/Mg < 8.0 where the probability for each star is taken from the IMF of
Kroupa, Tout & Gilmore (1993, see appendix D4) and a constant star formation rate is
assumed. Results are compared to the LMC (Z = 0.008) and SMC (Z = 0.004) data taken
from (Groenewegen, 2002; see also Groenewegen, 1999). The theoretical distributions are
binned identically to the observed data in 0.25 mag bins. All distributions are normalized
such that the integrated probability is 1.0 so are independent of the star formation rate.
Because the bin widths are fixed the probability density is directly proportional to the
probability per bin i.e. the number of stars per bin. It is compared directly to the suitably

normalized observations.

It turns out that to fit the dim carbon stars with bolometric magnitude greater than —3
a correction to the luminosity to deal with post-flash minima must be introduced. This is

a factor of the form

fi,=1—0.5 x min [1,exp(—3;)] , (113)

Tip
which is activated for the first ten pulses to mimic the Monash models. After about ten
pulses the luminosity dip lasts for a short time and is not of large enough magnitude to
contribute to the dim CSLF tail (the maximum dip seen in the full evolution models is a
factor of 0.5L equivalent to 0.75 mag). Extending the dip to all pulses does not significantly
change the model CSLF of either the SMC or LMC. The dimmest of carbon stars with
magnitude about —3 cannot be fitted at all because they are probably extrinsic carbon
stars in binary systems (Izzard & Tout, 2004). Note that in order to resolve the dips the

timestep is reduced to at most one tenth of the interpulse period.

The problem with the CSLF is that detailed models predict a distribution of stars that is

too bright. The accepted interpretation is that dredge-up does not begin early enough on
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the TPAGB or at a low enough (core) mass. The inability of stellar models to match the
observed CSLFs in the Magellanic Clouds leads to the introduction of two free parameters,
AM™" and Api,. The minimum core mass for third dredge-up is shifted by AM™n"(< 0)
such that dredge-up occurs at lower core masses than predicted by K02 (fig. 30, left panel).
The dredge up efficiency A reaches the asymptotic value A\n.c after a few pulses. It is

adjusted so that

(114)

_ fit
)\max - maX<)\mina )‘max) 9

where At

is the value from K02 (see figure 30, right panel). The efficiency of dredge-up in
low-mass stars is increased with respect to the fit of K02 but remains suppressed for the first
few pulses. The synthetic model is used to calibrate values of AM™® and \,;, appropriate
for the LMC (Z = 0.008) and SMC (Z = 0.004) by a least-squares minimization. The
shifting of the dredge-up parameters in this way is motivated by simplicity in the face
of ignorance of the physical process responsible for dredge-up in low-mass stars — a more

complicated expression is not justified.

The best fit single star models (see fig. 31) have AM™® = —0.07 and Ay, = 0.5 for the
LMC and AM™" = —0.07 and Ay, = 0.65 for the SMC. These values are similar to those
of Marigo (2001) noting that AM™® = —0.07 gives M™" ~ 0.59 Mg, at M; ~ 1.5M,, (a
typical mass for C-stars; Wallerstein & Knapp, 1998).

A simple linear fit to the above dredge-up parameters gives

AM™™ = —0.07 (115)

and

Amin = 0.8 — 37.57 (116)

which equates to 0.05 at Z = Zg.

Comparison with figure 9 shows that a value of AM™® nearer to —0.09 M, is necessary
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to match Marigo’s prescription although the functional form of the prescription is otherwise

similar.

2.15 Single Star AGB Yields - Monash vs Synthetic

The following yields for isotopes j are defined by

1 [t
p(j,Mi):M/O MAX; dt (117)

where ¢ is time (maximum evolution time is 16 Gyr for these calculations), M; is the
initial stellar mass, M the mass-loss rate and AX; = X (t) — X (t = 0). An IMF-weighted

form

f(Mi)/O MAX;dt = £(M;) Mip(j, M) (118)

is plotted where {(M;) is the KTG93 IMF as given in appendix D4. For a more detailed
discussion of yield definitions see chapter 5.

The synthetic model yields should match those of the Monash models but there are
some sources of difference. The synthetic models include the final few pulses in high-mass
stars. These pulses occur when the effect of HBB is diminishing so contain a mixture of
processed and unprocessed isotopes. Increases are seen in the yields of 2C, 3C, N, 170,
20Ne, 22Ne, Mg and 26Mg. There is another problem with the high-mass yields of isotopes
heavier than neon. The 2°Ne abundance is extremely sensitive to the temperature and so
tiny errors on the temperature fit. For this reason it is over-produced at all metallicities
for M > 6 Mg, although it is under-produced for Z = 0.02, M = 5Mg. It proves to be
extremely difficult to fix this problem. This is frustrating and an indication of how difficult
yield predictions are for AGB stars. The incorrect *°Ne leads to dubious *'Ne, although
22Ne is rather more robust to temperature changes. Na is over-produced at high mass and
low metallicity. This might be attributed to the (artificial) lack of leakage to the MgAl

cycle however Mg seems correct, except at the highest mass where, at Z = 0.008, it is

84



2.16 Combining SSE with Nucleosynthesis and the Monash fits

fitted excellently while at Z = 0.02 and Z = 0.004 there is too little. Again, ?Mg is very
sensitive to the temperature, and hence the mass. The Monash yields decrease from —10~*
to —8 x 1074, nearly an order of magnitude, between M = 5My and M = 6 M, — that
this is modeled at all by the synthetic model is a good sign. The other MgAl isotopes are
reasonably well fitted but again at high masses most yields are overestimated.

In summary, the synthetic yields provide good estimates (correct to within a factor of 2
at any mass) of the AGB yields with the exception of 2*°Ne and ?*Mg which can be wrong

by a factor of 10 although there is no systematic variation with mass or metallicity.

2.16 Combining SSE with Nucleosynthesis and the

Monash fits

Minor changes are required to make the SSE code function smoothly in conjunction with
the fits to the Monash models. The core mass at the first thermal pulse is used to define
the EAGB timescale and for M > 7TMg, Z = 0.02 the timescale is zero because the SSE
M, 17p is quite different from the K02 fit. This affects few stars, especially when the IMF is
included, and does not affect TPAGB evolution because second dredge-up is still assumed
to occur at the beginning of the TPAGB. There is also a discontinuity in the luminosity
and radius at the beginning of the TPAGB because the Monash model luminosities do not
match those of the Eggleton-based models. This causes problems when the timestep is
determined by the rate of change of the radius, so a minimum value of 0.17, is used to
maintain accurate evolution and code speed. The same limit is necessary when post-pulse
luminosity dips are taken into account because these dips are assumed to be instantaneous
and this leads to an infinite time derivative. The nucleosynthesis code itself only® interacts

with the stellar evolution via eq. (31) and so runs largely in parallel with the SSE code.

6Except WR mass-loss rates which may depend on surface abundance.
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Figure 33: As figure 32 but for N to 2!Ne.
87



2 Low- and Intermediate-Mass Stars

0.006
0.005
0.004
0.003
0.002
0.001

-0.001

0.0014
0.0012

0.001
0.0008
0.0006
0.0004
0.0002

-0.0002
5e-05

-5e-05

-1e-04
0.00015
-0.0002
0.00025
-0.0003
0.00035
-0.0004
0.00045
-0.0005

0.0007
0.0006
0.0005
0.0004
0.0003
0.0002
0.0001

-0.0001

9e-06
8e-06
7e-06
6e-06
5e-06
4e-06
3e-06
2e-06
1e-06

88

25

123465678
M/M,

Figure 34: As figure 32 but for ??Ne to 2°Al.
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Figure 35: As figure 32 but for 26Mg and 27Al
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3 High-Mass Stars

Massive stars are defined as those stars which are initially massive enough to ignite carbon
in their cores and progress to a nuclear runaway. This occurs in stars with a mass M 2
7 — 8 M. At solar metallicity the limit is 8.25 M according to the SSE model, although
the choice of mass-loss prescription introduces some uncertainty. Stars in the mass range
8 < M /Mg < 24 evolve on to the EAGB but never make it to the TPAGB because the core
grows large enough to collapse. The star explodes as a type II supernova. The hydrogen-
rich envelope is ejected into the ISM together with some of the core. The remainder of

< 1.7, with the SSE

~

the core forms a neutron star remnant with a mass 1.3 < Mys/Mg
prescription. There is some uncertainty in remnant mass and ejected mass, this is addressed
in section 3.8. The abundances of mass ejected from the core cannot be modelled simply
so fits to detailed models are used, see section 3.7.

For stellar masses greater than about 25 My, the star is luminous enough that line-driven
wind loss removes the hydrogen envelope to expose the helium core. Such stars are known
as Wolf-Rayet stars. As the hydrogen envelope is stripped, deeper and hotter layers of
the star are exposed. These layers are rich in N owing to CNO cycling and are called
WNL stars. As the hydrogen itself is removed the star becomes a helium star, this is the
WNE phase. The products of helium burning are then also exposed as mass loss continues,
leading to a WC phase owing to surface carbon and a WO phase due to surface oxygen.
These stars will explode as type Ib/c supernovae if the (degenerate) core mass in any
post-helium-MS stage exceeds Mcy,.

The detailed models used for fitting are the Dray models. Nucleosynthesis is not as

detailed as with the Monash models because a reliable interface between the version of the
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Eggleton code used to construct them and Cannon’s nucleosynthesis code does not yet exist
(Dray, private communication). Fits to surface abundances vs ZAMS and instantaneous
mass are the basis for the rapid nucleosynthesis model. It has proven extremely difficult to
do any better, in the time allowed for a PhD, because the interplay between burning shells
and convective regions in massive stars requires a detailed model. However, prescriptions
for surface 'H, *He, 12C, N, 60 and ?°Ne have been constructed. A few minor isotopes
have been introduced by comparison of the Dray models with those of Maeder & Meynet
(1994, MM94).

3.1 The Models

The full evolution models of massive stars are calculated with the Eggleton code (Dray,
private communication) and are published in Dray et al. (2003) and Dray & Tout (2003).
The models cover the mass range 10 < M/ Mg < 150 although only stars up to 100 M,
are used for fitting because this is the range of the SSE model. Metallicity is in the range
107* < Z < 0.03. The SSE code was constructed with a similar code to that used to make
these models so the stellar evolution should be consistent, although that does not mean it

is!

The Wolf-Rayet phases are defined in a similar way to Dray et al. (2003, who took their
definition from Maeder & Meynet, 1994) but without the effective temperature condition
(they use Tog > 4 for WR stars) and with a lower X limit of 0.01 rather than 0. The effective
temperature limit does not work well with the SSE code because the stars are often too
cool to be classed as WR stars. Given the uncertainty in current WR observations this is
not entirely unphysical. The X limit is for numerical convenience — the drop toward zero
hydrogen is rapid so the difference between the two conditions X = 0 and X = 0.01 is

small. All other massive stars are termed OB.
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3.2 Surface 'H and *He in hydrogen stars with M > 8 Mg,

Surface Conditions Phase
X >04 OB
001 <X <04 WNL

X <0.01 and (C'+0)/Y < 0.03 | WNE
X <0.01 and (C+0)/Y >0.03 | WC
X <0.0land (C+0)/Y >1 | WO

The full evolution models use two mass-loss rates, referred to as MM (after Maeder &
Meynet, 1994) and NL (after Nugis & Lamers, 2000) details of which can be found in Dray
et al. (2003) or appendix D of this dissertation.

The following synthetic fits are to the mass M, core mass M, and initial mass Myzans! for
the Z = 0.02 set of models. Corrections are applied for variation in mass-loss prescription
and metallicity. Stars are defined for convenience as hydrogen stars or helium stars, where
helium stars are those defined by the SSE algorithm to be types HeMS, HeHG or HeGB
and hydrogen stars are all the prior stellar evolution phases (MS, HG, GB, CHeB and
EAGB).

3.2 Surface 'H and “He in hydrogen stars with
M > 8\,

Stars with M < 38 Mg experience a sudden change in surface hydrogen abundance X
when the internal convection zone reaches the surface. This is coincident with the beginning
of the Hertzsprung Gap (HG) phase or the base of the RGB for M < 14 M?. The surface
hydrogen abundance is fitted with a Fermi-like function of the mass lost by the star relative

to the main sequence AM = Mzams — M such that

dX,

AM—dM; ?

119
T (119)

X = Xim —

! Mzawms is the ZAMS mass in single stars, but see section 4.6 for binaries.
2Stars more massive than this have no RGB at solar metallicity.
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Figure 36: Schematic view of surface hydrogen abundance vs mass for M < 40 M.

as shown in figure 36. The hydrogen drop of magnitude dX; occurs when dM; is lost
from the star, the slope parameter s; models the rate of change of Xy; with mass lost. For
M = 25 Mg, there is a further drop in hydrogen as the core approaches the surface. This is
also modelled by a Fermi function at a mass Myanus — dM, and of magnitude dX, so the

expression for X becomes

dX, dX,

X = Xim —

(120)

The drop in surface hydrogen for M = 38 M, stars is not as sudden as in lower-mass
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3.3 Surface CNO in hydrogen stars

stars, so Fermi functions of log,, AM rather than AM are used. Only one log-Fermi

function is required for M 2 55 Mg, (see figure 37).

The two different mass-loss rates lead to different behaviour of X, but this can fitted
to M. and Myq (see Appendix B7.2) where Myq is the mass at which the star leaves the
MS and becomes a HG star. Both the core mass and the HG mass depend on the mass
loss in the SSE code because luminosity depends on mass and the mass of the core depends
on the luminosity history of the star. Prior to the HG My is approximated using a linear
extrapolation based on the GB base lifetime tggp = tms + tug, where tyg and tyg are the

MS and HG lifetimes, and the stellar age ¢, such that

tBaB

Muc = Mzams — (Mzans — M) .

(121)

and once the HG is reached Myg is known.

Corrections are made for changes in metallicity. For Z > 0.02 there is little change but
for Z < 0.01 the behaviour of the convection zones differs due to opacity changes such that
the sudden changes in Xy; at Z = 0.02 are smoothed out. Corrections are made to the
Z = 0.02 fits to deal with this. Appendix B7 contains the necessarily rather complicated

numerical details.

Surface helium is then calculated from

Xbea =1 = X1 — Z4 (122)

where Z; is the current metallicity of the star with a correction to ensure a smooth transition

to the helium star phase (see appendix B7).

3.3 Surface CNO in hydrogen stars

As hydrogen is burned by the CNO cycle the CNO isotopes other than N are converted to

MN. Tt is quite simple to fit Xc1o and X1 to X1 and calculate Xyi4 by conserving CNO
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Figure 37: Schematic view of the change in surface hydrogen abundance for M 2 55 M.
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3.3 Surface CNO in hydrogen stars

number. First, ¥016 = Xxo16/Xcno is fitted as a function of xm = Xxm x 0.7/X; xm

(such that ¢xp; = Xxmi for Z = 0.02 because X; xpi = 0.7) then

_ c123¢¥xH1+d123 f123
Yoie = max |0, (a1 + biys + e1239%7 ) X

(9123 + hieaMzanms + G123 Mg anrs + J123 Mo anis +

k’lgg eXp(—(MZAMS — 40)2/l123)} . (123)

Then @Z)ClQ = XXClQ/XCNO is fitted to ’lﬂow as

Yoz = max [0, arzg + biaathors + 12405 6] - (124)

The change in surface N is then calculated from the change in surface 2C and '°O in

the current timestep

(125)

12 16
A14N:14(A c,2 O).

12 + 16
The Dray models do not contain *C however the MM94 models do so it is possible to
approximate the surface abundance. The mass at which 2C and N are equal for the
Dray models and the MM94 models is used as a reference and the 3C abundance taken
as typical for the CNO burned layers. The change in *C is then related to the change in
120! by

d®C = —y3d"C (126)

where 713 is a function of Mzaums and Xyy4. The maximum value of *C is about 12C/4
when the CNO cycle is in equilibrium. It turns out that about 1% of *C is from WR stars,
most is produced in AGB stars and novae so even if this approximate value is incorrect it

is not important.
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Similarly 7O and '80 are not represented in the Dray models but from the MM94 models
it is clear they approximately follow %O such that

Xo17 =6 x 107* X016 (127)

and

X018 =2 X 1073X018 . (128)

The contribution to the total yield of YO from massive stars is small compared to that

from AGB stars.

Because the CNO cycle is active in high-mass stars it is expected that the NeNa and MgAl

cycles are also but modelling such nucleosynthesis is beyond the scope of this dissertation.

As the core of the star approaches the surface the abundance of CNO elements other than
12¢ and %0, which are present because of helium burning, drops as the surface hydrogen
abundance drops. Any 3C, 7O or 80 present is converted first to “N and then all the
CNO isotopes except 2C and 90 are converted to 2*Ne by double-alpha capture on *N.
For 0 < M — M. < 0.5 this is approximated by

AlSC A14N Al?o AlSO
A?’Ne = 22 12
¢ (13+14+17+18)’ (129)
X,
Xew = (M = M) 522 (130)
Xis = (M — M) (131)
and

Xoir = Xoig =0. (132)

When M. = M the star becomes a helium star.
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3.4 Helium Stars

3.4 Helium Stars

The SSE code defines the helium star phase as that when M. = M where M, is the helium
core mass. The Dray models show that the surface hydrogen is zero by this stage and so
is easily fitted! Helium constitutes a fraction 1 — Z; of the surface abundance when the
core reaches the surface however mass loss causes the surface to eat into the still burning
helium core. The products of helium burning — mainly 2C and 0 — are seen at the
surface. It proves to be extremely difficult to fit the profile of 12C and 6O in the interior
of the star, and hence the surface evolution as mass is stripped. This is because there is a
complicated interplay between the nuclear burning so the profile changes as a function of
time, convective mixing of this profile and the decreasing mass and so decreasing rate of
nuclear burning and exposure of deeper layers. The problem becomes even worse when both
mass-loss rates are considered, then worse again when 7 is varied, leading to a nightmare
scenario. As Dray & Tout (2003) point out at the lowest metallicities two stars of almost
identical mass follow a considerably different evolutionary path and end their evolution
with different 12C and '°O at the surface. For this reason, and lack of brainpower of the
author, a simple approach is used here. The HeMS timescale is used to fit the surface
helium abundance then '2C and 9O are fitted to Xye. The terminal abundances, just

prior to model breakdown are Xyeqs = 0.25, X0 = 0.45 and Xg1 = 0.3.

The surface helium abundance is parameterized by

THeMS

tHe
Ve = max {0, min ( el 1)] (133)

where tyemg 1S the time spent on the helium main sequence and Tyems 1S the helium main

sequence lifetime such that

XHe4 = max(0.25, 1— ZHe - 07’7He) (134)

where Zy, is the surface metallicity at the start of the helium star phase before any *He is

burned to 2C or 0. Carbon and oxygen are fitted to
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Xz = min [0.45, (0.99273 — Xpes)/1.2811] (135)

and

Xoi6 =1 — Zne — Xges — Xci2.- (136)

All other CNO isotopes are assumed to be converted to 2?Ne. °Ne and 2*Mg do not change

at the surface® although may in the interior (see section 3.7).

3.5 Synthetic vs Full Evolution

Figures 38, 39 and 40 show abundance vs instantaneous mass tracks for the synthetic
models vs the Dray models for a selection of Z = 0.02 models as well as the MM94 models.
The fit for 'H is excellent while “He is excellent until the star becomes a helium star. The

MM94 models show the same qualitative behaviour.

The rise in 12C and 'O during the helium star phase is clear. The mass at which the
star becomes a helium star differs from full to synthetic model by a few solar masses at
M; = 60 Mg, and the 86 M, MM synthetic model has no helium star phase at all (although
the NL synthetic model does). The MM94 'C evolution is complicated and the initial
abundance must be doubled in order to obtain a good fit. The reason for this is unclear —
if pre-MS evolution is responsible for the 1*C abundance then the surface 2C should be low,
although it too is higher, which suggests MM94 used different initial surface abundances
to Dray et al. (2003). Surface nitrogen is excellently fitted by the synthetic model. The
approximate treatments for 17O and '80 are reasonable as far as they go, however the
MM94 models show a peak in surface 80 at the start of He-burning, the reason for this
is unclear but is possibly owing to a-capture on “N. As expected surface 2°Ne does

not change, the slight blip in the synthetic models is due to a normalization error — the

3The 2°Ne which changes in the Dray models is really 22Ne, confirmed by the MM94 models.
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3.5 Synthetic vs Full Evolution

magnitude of the error is 3% at most. This justifies the consideration of the Dray models’
neon as 22Ne, the synthetic fit for which is also good. Magnesium shows no change.

Differences between the synthetic and full evolution models are due to a number of effects.
First, at low mass (M; < 24 M, for Z = 0.02, NL mass loss) the synthetic models’ main-
sequence lifetime is longer — for NL mass loss by about 1 Myr for M; = 20 My, 0.25 Myr for
MM mass loss — the precise reason for this is unknown. Overshooting lengthens the main
sequence lifetime but both the Dray models and the full models used to make the SSE code
employ similar overshooting and both use the Eggleton code to calculate the timescales.
The SSE models were made without mass loss so this is a potential reason. Helium star
lifetimes are similar for all models.

Second, while the lifetimes differ by only 1 Myr, the final mass and evolutionary state is
sensitive to this difference. For an initially 20 M, star the pre-supernova mass is 14 M and
16.5 M for MM and NL Dray models while for the SSE model 5 My and 9 M. Fiddling
the SSE timescales to match the Dray models is possible, although probably not justified
given that changing the mass-loss rate has the same effect. For example, reduction of MS
timescale by a factor of 0.91 fits the Dray and synthetic MM models well, both exploding
with a pre-SN mass of 14 M. The same effect is achieved by a factor 3 reduction in the
mass-loss rate. The net effect is that the synthetic models explode at a lower mass after
becoming an EAGB star. The resulting wind yields (see below) are higher for these stars.
Once SN yields are included the difference between the synthetic and full models is lessened
because the SN ejects the envelope in much the same way as wind loss. The hydrogen-rich
envelope is ejected either way and there is little difference total yield.

High-mass stars at high metallicity also suffer from differences in mass-loss rates. The
most massive stars lose so much mass on the MS that they form a WD instead of following
the standard helium star to supernova evolutionary path. As an example, the synthetic
MM, Z = 0.02 stars explode to leave a 1.34 M, NS for M; = 81 Mg but form a 0.9 Mg
COWD for M; = 82 M, because their cores are not massive enough to explode during the
helium-star phase and mass loss on the HeGB exposes the CO core. For M; = 83 Mg a
0.3My HeWD is formed as the core is exposed on the HeMS while for stars with M; >
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3 High-Mass Stars

84 My there is no helium star phase, instead they lose almost all their mass to form
< 0.1 Mg HeWDs. This behaviour is not seen in the Dray models at Z = 0.02 but is
at Z = 0.03. The use of the NL wind also prevents such behaviour. Whether it truly
occurs is unclear although it is difficult to be overly worried — the IMF renders such stars
extremely rare, at least at Z = 0.02. The cause of the behaviour in the synthetic models
is the underestimate of the luminosity (e.g. see fig. 40) which leads to an underestimate of
the core mass.

Another useful check on the synthetic models is the lifetime in a particular WR phase,
as shown in table 8. The full and synthetic models are in general agreement, at least to
within a factor of a few, but there are some irreconcilable problems. The synthetic MM
models evolve to WR stars at M; = 20 M, this is due to the MS lifetime and corresponding
mass-loss differences discussed above. At M = 80 Mg the NL WNL lifetime presents the
most problems however again this is disfavoured by the IMF and the M = 40 M models
agree well. Indeed for M < 40 M, only the WNE phase is significantly different. This is
the most difficult to model because it depends on the CHeB timescale, which depends on
the mass at the end of the main sequence which in turn is sensitive to the mass-loss rate.
The effect on chemical yields, however, is expected to be small. The WR type vs mass
plot (figure 40) shows that the amount of mass lost while the star is nitrogen rich is about
the same for the detailed and synthetic models, so the enrichment is similar. The use of a
reduced mass-loss rate, by a factor 0.4 (see section 3.6), leads to better agreement for the
MM stars up to 30 M although cannot be justified on lifetime grounds alone for the NL

models.

3.6 Wind Enrichment

Wind enrichment by the synthetic and full evolutionary models is compared in figure 41.
The synthetic models do an excellent job of reproducing the hydrogen, helium and nitrogen
yields. There are differences at low mass, again owing to MS timescale differences, and

around 25 Mg due to breathing pulses in the Dray models. The effect of these breathing
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Figure 38: Comparison of surface isotopic abundances (Xw1, Xnes, Xci12, Xciz and Xni4) vs mass for
Z =0.02 and M ~ 15,40,60 and 86 Mg, (85 Mg for MM94) models. The number in the top
panel gives the Dray/synthetic model mass, the nearest available MM94 model is used. Red

and green are the Dray models with the MM and NL mass loss rates, blue and magenta are

the corresponding synthetic models, cyan are the MM94 models.
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Figure 39: As figure 38 for Xo15, X017, X018, Xne20 and Xyeso. The Dray models do not
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‘ Wind Loss ‘ Initial Mass /M@ ‘ tpre—WR/yr ‘ tWNL/yr ‘ tWNE/yr ‘ twc/yr ‘ two/yr ‘

MM 10 2.6 x 107 0 0 0 0
MM x0.4 2.6 x 107 0 0 0 0
MM Dray 2.5 x 107 0 0 0 0

NL 10 2.6 x 107 0 0 0 0
NLx0.4 2.6 x 107 0 0 0 0

NL 2.5 x 107 0 0 0 0

MM 20 9.3 x 10° 0 47 x 107 | 1.1 x 10° | 1.6 x 10°
MM x0.4 9.3 x 106 0 0 0 0
MM Dray 9.5 x 109 0 0 0 0

NL 20 9.4 x 10° 0 0 0 0
NLx0.4 9.3 x 106 0 0 0 0
NL Dray 8.6 x 10 0 0 0 0

MM 30 6x 10° | 24x 107 | 1.0 x 10° | 2.2 x 10° | 2.4 x 10°
MM x0.4 6.1 x 106 | 6.1 x 10* | 3.7 x 10* | 4.7 x 10* | 5.6 x 10*

5.9 % 109 | 2.1 x 10* | 8.9 x 103 | 2.5 x 105 | 1.9 x 10°
NL 30 6x 105 | 1.1 x 10° | 4.0 x 107 | 6.1 x 107 | 7.6 x 107
NLx0.4 6.2 x 10° 0 0 0 0
6x10° | 1x10° | 1.3x10%| 9.3 x 10* | 2.9 x 10*
MM 40 19 %100 | 32x 107 | 1O 10° | 2.5 x 10° | 2.2 x 107
4.5 %100 | 3.3x 10% | 4.3 x10* | 3.2 x10° | 1.9 x 10
NL 40 48 x10° [9.9x 107 |41 x 107 | 1.3 x10° | 1 x 10°
45 %105 [ 9.0 x 10% | 5.2 x 10% | 1.5 x 10° | 1.5 x 10
MM 60 Ax10° [14x10°]9.4x 107 | 1.9 x 10° | 1.7 x 10°
3.5 x 106 | 4.5 x 101 | 3.1 x 10* | 1.9 x 10° | 2.3 x 10°
NL 60 39x10° | 1.8 x 10° | 6.8 x 107 | 1.0 x 10° | 6.7 x 107
3.5 x 106 | 4.3 x 10% | 4.1 x 10* | 1.7 x 10° | 1.5 x 10°
MM 80 34x10° | 38 x 107 | 4.5 x 10° | 2.0 x 10° | 2.7 x 107
2.7 % 10° | 3.9 x 10° | 5.1 x 10* | 2.9 x 10° | 2.1 x 10°

NL 80 35x10° | 1.8x10° | 5.3 x 107 | 1.1 x 10° | 6.4 x 10°

3x 105 |3.3x10%| 3x10° | 1.9 x 10° | 1.3 x 10°

Table 8: Single star WR phase lifetimes (Z = 0.02) for various initial masses. Black text
(above) is the synthetic model, red text (below) is from the Dray models. The
blue text is a reduced mass-loss rate synthetic model.
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pulses is small and over a narrow mass range so is ignored and indeed may only be a
numerical artifact.

The qualitative behaviour of the synthetic and full models for >C and 'O is similar,
with the high-mass drop off evident for MM rates, however the synthetic model does a poor
job of reproducing the yields above 30 M, for the MM mass-loss rates. This is because of
the longer CHeB lifetime of the synthetic models which leads to HeMS entry at a lower
mass than in the full evolutionary models and a shorter HeMS lifetime. This in turn leads
to lower helium-burning product yields by up to a factor of 1.8 (a difference of 2M) at
M = 70 M. An artificial increase in the HeMS lifetime by a factor of 3 (or corresponding
decrease in M) fits the MM yields but raises the NL yields so they are discrepant.

However, this problem becomes small when the IMF is folded into the yields. Far more
important is the over-production by wind loss for stars with mass below 25 M. Figure 42
(right panels) shows the problem clearly as an over-production of everything at low mass.
Applying a factor 0.4 reduction (MM and NL) to M for M < 25M, enables far better
fitting of all the isotopes. Once the M correction is applied the problem with C and O above
30 My again dominates, but is a minor effect on the integrated yield, as are the breathing
pulses. It is perhaps also fortunate that C and O yields are dominated by supernovae, so

the errors on the wind loss become irrelevant.

3.7 Core Collapse Supernovae

The usual fate of massive single stars is to die in a supernova explosion. As nuclear fuel runs
out the core becomes more and more degenerate. Eventually it reaches the Chandrasekhar
mass and collapses. Neutrinos from electron capture reactions on protons are thought to
yield the energy required, up to 10 ergs, to power the ejecta. The remaining matter forms
either a neutron star or black hole. The abundance of the ejected material is impossible to
predict with a synthetic model so a set of previously calculated yields must be used. The
most complete set to date is that of Woosley & Weaver (1995, hereafter WW95) which
covers a mass range 10 < M; /Mg < 40 , metallicity range 0 < Z < 0.02 (the A models) and
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Figure 41: Dray model vs synthetic model wind enrichment vs initial mass (Z = 0.02).

Red and green are the Dray models for MM and NL mass loss respectively, blue
and magenta are the corresponding synthetic models.
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3 High-Mass Stars

isotopes less massive than "'Ge. Only the Z = 0.02, 0.002 and 2 x 10~* models are used for
fitting (the others lie outside the SSE metallicity range). The mass range corresponds to a
final CO core mass range of 2 < Mao /Mg < 15. The WW95 models are evolved without
mass loss so there is some degree of faith required to link CO cores of the same mass
between the WW95 models and the SSE code, although it is currently not possible to do
any better. There is also the question of remnant mass (see section 3.8) which determines

the amount of mass ejected and is also subject to much uncertainty.

For each WWO95 star the yields quoted represent everything outside the remnant, includ-
ing the hydrogen-rich envelope. The method of Portinari, Chiosi & Bressan (1998) is used
to remove the envelope and obtain the enrichment from the CO core alone (see appendix
A3). The enrichment from the CO core is converted to a mass fraction in the ejecta X;j’co

which is then fitted to Moo and Z. The final supernova yields are given by

X;j’co x max (0, Mco — Mys/pr) + X} X (Mpre.sx — max [Mys/sn, Mco] )

X% =
Mpre-sx — Mys/BH

J

(137)
where the first term results from matter ejected from the CO core and the second term
is due to the ejected envelope, Mgy is the mass of the star just prior to the SN and
Mxs/pn is the remnant mass. If Myg/pn is greater than the CO core mass then the first
term is zero and only the envelope contributes. The abundance X ]’ is set to the envelope
abundance X for hydrogen stars. The star is a post-MS star so the envelope is probably
convectively mixed or is mixed shortly before the SN. The surface abundance is a good
approximation to the envelope abundance. If the star is a helium star a correction must
be applied because the envelope is heterogeneous. According to the only available Dray
model (56 My, Z = 0.02) shown in figure 43 (Dray, private communication), between the
surface (at 7.2 M) and 1.5 M, outside the CO core (at 6.2 M) the He,'2C, 60 and 2°Ne
mass fractions change approximately linearly (magenta region). Inside Mco + 1.5 Mg, the
core is homogeneous (red region) with mass fractions X" given by *He = 0.06, 12C = 0.3,

160 = 0.6 and ?°Ne = 0.03. The other mass and metallicity models behave similarly (Dray,
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private communication) although a proper fit would require details of all the models and
is beyond the scope of this work. The envelope abundances are then given by averaged
values

_OM

X} = =5 (X + X&) + (Mony — OM)XE", (138)

where 6 M = max(0, Meny — 1.5 Mg). The abundance changes near the centre of the star are
within the remnant so do not require such treatment. The NS/BH remnant mass depends
on prescription (see below) and it is assumed that there is no dependence of X;’j on this
mass. The fits for X;j’co to the models of WW95 are in appendix BS8.

The difference between SN and wind yields for the SSE standard mass-loss rates and
SSE BH prescription are shown in figure 44. Any worries over differences between the
Dray C/O yields and the synthetic C/O yields are unfounded because the C/O yields
are dominated by SNe over most of the mass range. The break in '2C yields at 25 M
corresponds to the formation of helium stars (i.e. WR stars), below this mass the star
explodes as an EAGB star shortly after the end of core helium burning. All hydrogen,
helium and nitrogen contributions to supernovae are due to removal of the EAGB star
convective envelope, hence the justification of the homogeneous envelope assumption.

Note that core collapse SN yields for r-process isotopes are not included because no yield

sets have been published.

3.8 SN Remnants and Their Masses

The SSE model defines the remnant neutron star or black hole baryonic mass as a linear

function of the core mass

Mys) g = 1.17 4 0.09Mco (139)

with BH formation for Mco > 7Mg. This gives a minimum BH baryonic mass, and

corresponding maximum NS baryonic mass, of 1.8 M, and a BH baryonic mass of 3 M
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Figure 44: Wind and wind-+supernova yields vs initial mass for the Z = 0.02 synthetic
model (standard SSE black hole and mass loss prescription, KTG93 IMF weight
included). Red is for wind and supernovae, green is wind alone.
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for a 20Mg CO core. Observations of BHs in X-ray binaries (Orosz, 2003) suggest far
higher masses, perhaps up to 18 My, although it is unclear whether these black holes
are due to binary accretion or a high mass at birth. Using high-mass remnants Fryer &
Kalogera (2001) claim to reproduce the then available BH binary mass distribution. The
BH mass prescription of Belczynski, Kalogera & Bulik (2002) is added to the SSE code
(see appendix B9) to provide an option for high-mass single star BHs. Figure 45 shows
the remnant masses for the SSE or Belczynski et al. BH mass prescription for the SSE,
MM or NL mass-loss rates at Z = 0.02. The mass-loss prescription has some effect on the
remnant mass but in order to obtain any remnants more massive than 3 My in single stars
the Belczynski et al. formula must be used. Note that for M. > 7 Mg according to the
Belczynski et al. prescription the entire stellar mass is swallowed into a BH, corresponding
to an upper initial mass for SN of 70 M, for the SSE wind prescription, 85 Mg for MM and
45 M, for NL.

For nucleosynthesis the surface of a NS or BH is considered to be made up entirely of

neutrons

X, =1 (140)

although this is mainly to balance the accounts — the matter cannot escape (in this model

NS-NS mergers are assumed to yield nothing) so cannot contribute to stellar yields.
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4 Binary Stars

The nucleosynthesis prescriptions described in the previous chapters are now applied to
binary stars. The BSE algorithm already deals with the dynamics of binary evolution,
including orbital motion, tidal interaction, wind loss and accretion, common envelopes,
mergers, novae and type [a supernovae. It remains to again link these mechanisms with a
synthetic nucleosynthesis model which runs in parallel with BSE. This proves to be “more
complicated than I thought” (Tout, private communication), which is something of an un-
derstatement! Wind accretion, by the Bondi-Hoyle mechanism, is complicated by colliding
winds and the question arises: what is the abundance of the accreting material? Tidal
interaction is ignored as far as nucleosynthesis is concerned except for Roche lobe overflow
which may pollute a secondary or cause an explosion. Common envelopes are dealt with
in a simple way by completely mixing the stellar envelopes on the assumption they are
uniform — such stars are usually convective so this is not a bad assumption. Mergers are
similarly modelled by complete mixing. Nova and type Ia supernova yields are fitted to
detailed explosion models. A nucleosynthesis-specific problem is that of thermohaline mix-
ing where a material from an evolved star accretes on to an unevolved star. Does it sink
or does it swim? An approximate, but fast, treatment is presented. Other less important
binary-specific effects are also considered such as binary-enhanced wind loss. Finally a few

example systems are presented.
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4.1 Wind Accretion

As in Hurley et al. (2002) wind accretion is assumed to be by a Bondi-Hoyle mechanism
(Bondi & Hoyle, 1944) averaged over a binary period (because wind loss typically occurs

for many orbits) which leads to an accretion rate on star 2 from star 1 of

—1 |:GM2:|2 AB-H 1

T—e2 | vhy | 2a% (14 02)3/2

(Nbop ) = min (0.8 )MIW) , M1W> (141)

where ap.y is the accretion efficiency (typically ap.y = 3/2), a is the semi-major axis of

the orbit,

2
V? = :2—‘0 (142)
1w

where the (RMS) binary orbital velocity is given by

= o) =y D) (113)

and the wind velocity viw is assumed to be proportional to the escape velocity from the

donor star

GM,
Ry’

vw = 20 (144)

where 3 = 0.125 is the default BSE value. The limitation to 0.8 My is to ensure more mass

is not accreted by star 2 than is lost by star 1.

If both stars have stellar winds then the original BSE model ignores any interaction
between the two winds and eq. (141) is used for each star separately. Because, for nucle-
osynthesis, the composition of the accreted matter must be followed this approximation is

no longer applicable.

Consider the fate of one star, here called the accretor, although it both gains and loses

mass. In one timestep 0t it loses mass
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4.1 Wind Accretion

oM, = Mot (145)

where My is its mass-loss rate and gains mass dM; from the donor (its companion star)

SM; = Myt (146)

where the accretion rate M, is calculated with eq. (141). The mass lost has the abundance
of the surface of the accreting star X sccretor While the mass gained has the abundance of the
donor surface X jonor. With the assumption that the winds do not interact the situation
is as in figure 46 and it is obvious that all the accreted material has the abundance of the

donor.

Now consider that the winds mix such that a fraction f;x of the accreted material,
originally from the donor, mixes with the accretor’s own wind. Such mixing could be
due to a number of physical instabilities, e.g. Kelvin-Helmholtz or turbulence, or perhaps
shocks forming between the winds leading to direct exposure of the donor to its own wind
material. The situation is shown in figure 47. There is no mixing of previously expelled
wind which might be in the space surrounding the binary system, such material is assumed

to be lost to the ISM forever.

The abundance X z.in of species j in the material gained by the accretor is given by

5mth,gain - 57”1;)(']‘,donor - 5mt fmiij,donor + 5mtfmiij,accret0r (147)

i.e.

Xj,gain = (1 - fmix)Xj,donor + fmiXXj,accretor . (148)

Conservation of mass leads to an expression for the abundance of the mass lost X 154

5mer,lost - 5mer,accretor - 5mt fmiij,accretor + 5mt fmiij,donor (149)

119



4 Binary Stars

Figure 46: Accretion without interacting winds. Blue represents material from the donor
star (not shown) of abundance X gonor, red is material from the accreting star
of abundance X sccretor-
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4.1 Wind Accretion

Figure 47: As Fig. 46 with interacting winds. A fraction fi,ix of the donor’s material (blue)
mixes with the wind (red) prior to accretion.
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i.e.

)
"X donor (150)

r omy

Xjlost = Xj accretor (1 — fmix%) + fmix
There are two limiting cases. First the case of no accretion such that ém; = 0 and om, # 0.
From eq. (150) X ost = X accretors as expected because all material lost comes from the
accretor’s surface, and Xj g.in is undefined but this does not matter because no mass is
accreted. The second limit is no wind loss such that dm; # 0 and dm, = 0. Eq. (150)

diverges but again this does not matter because no mass is lost, fiix = 0 because there is

nothing to mix into s0 X gain = X donor as expected.

It remains to determine f;c. It cannot be negative or greater than one because negative
mass has not been discovered and it is impossible to mix more mass than is actually there
s0 0 < fmix < 1. RLOF and/or accretion without an opposing wind leads to fpix = 0
so this is definitely possible. When the accreting star’s own wind is strong the incoming
material is shocked and never reaches the accreting star so fmix = 1 (see fig. 48). However,
if the accretor’s wind is weak fuix has an upper limit of f,;x0m; < dm, because there
is a maximum mass dm, to mix into. As fig. 49 shows this leads to the accretion of the
accretor’s own wind and some of the donor material, while the material expelled to the

ISM comes directly from the donor.

It follows that the limits on f.; are

om,
< foix <min (1, — | . 151
0% o < min (1,577 (151)

t
Still fix remains unknown but it is possible to model the collision of the two winds using
a momentum flux argument similar to that of Huang & Weigert (1982). The momentum

flux at a distance r from each star is

ey
472

(152)
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ESmI,—ESmt

Figure 48: As Fig. 47 with a strong wind and fn,;, = 1. Mass dm; from the donor (blue)
is pushed back into space by the accreting star’s strong wind. The accreting
star still accretes dm, but of its own matter so the surface abundance remains
unchanged. The dashed line shows the shock position, not to scale!

123



4 Binary Stars

Figure 49: As Fig. 48 with a weak wind and fi; < dm,/dm;. The accreting star accretes
a mixture of material from itself and the donor star. Mass dm, is still lost to
the ISM but it is all from the donor.
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() —

I’l I'2

Figure 50: Geometry of the simple interacting wind model. The stronger wind from star 1
shocks with that of star 2 at a distance r; from star 1 (or ry from star 2).

where vy, is the velocity of the wind and M the mass-loss rate. The momentum flux of

both stars is equal at the point where they interact and shock

Jy=Jy (153)
such that (fig. 50)
]lel
r=r - =1rofu 154
v=r 2f (154)

125



4 Binary Stars

where the Muv terms are factored into f,. The stars are a distance a apart (the orbit is

assumed circular) so r; + ro = a which gives

_
r/a = T T (155)
and
= 1 156
nfa= g (156)

so r1 and ry are solved in terms of the known variables a, M and v. For each star r; 18
compared to the stellar radius R;. If r; > R; the shock is outside the star and none of the
donor material makes it to the surface - this is the case fyix = 1. If r; < R; the shock is
inside, or rather on the surface of, the star and all the accreted material is from the donor,
hence finix = 0. In reality there is likely to be a smooth continuum between 0 and 1 but
quite how fix varies is unknown and depends on details of hydrodynamics around the star
— approximations used here, such as spherical symmetry, are likely to be invalid.

The above treatment is applicable to fast winds, such as OB/WR stars, when the binary
motion is negligible. In other cases such as giant branch winds, which are slow, or symbi-
otic stars the situation is complicated by turbulent instabilities (Walder & Folini, 2000).
Hydrodynamical simulations have been performed (e.g. the series of papers by Ruffert,
1994; Foglizzo & Ruffert, 1999) but only for specific cases and not the large parameter
space needed to cover all binary stars. Disk formation is also neglected here. Given the
uncertainties it seems an impossible situation but really it is not so bad. The chance of
winds interacting is small — most wind accretion is on to a main sequence star with a low

mass-loss rate.

4.2 Thermohaline Mixing and the Accretion Process

The fate of material accreted on to the surface of a star is unclear. It is possible that the

material either remains on the surface or that it sinks and mixes, and then it is unclear to
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what depth such mixing occurs. To deal with this problem accreted material is assumed
to form an accretion layer on the surface of the star or, if one already exists, the accreted
material is mixed into it. In this way the number of sets of abundances that has to be
followed is reduced to two — the accretion layer and the stellar envelope — compared to
the many hundreds in full stellar evolution models. While this is required to keep the
code from being too slow it is at the expense of the consideration of abundance gradients
in the accreted material. Such consideration is rarely required. The layer usually has a
higher molecular weight than the envelope because it comes from a star with significant
wind loss, which occurs during the latter stages of stellar evolution. In this case the
layer mixes instantaneously with the envelope by a thermohaline instability (Kippenhahn,

Ruschenplatt & Thomas, 1980; Proffitt, 1989).

When an amount of mass dm; with abundance Xj ., is accreted the accretion layer

/

tec = 0Mace + 0my and has a new abundance

increases in mass from dmg.. to dm

|
X tayer = 5 (0Mace X layer + 64X gain) - (157)

j,layer }
5macc

For stars with convective envelopes the layer is instantly mixed with the envelope to give

a new surface abundance

1
omf. + Menv

acc

Xj,env - (5m;chj,',layer + Meanenv) (158)

where X, is the composition of the envelope which has a mass Me,,. The accretion layer
mass is then set to zero. The accreted material is assumed not to mix into the star’s core

except for MS stars which do not have a well defined core and can mix completely.

Stars with radiative envelopes are more complicated. The molecular weight of the ac-

cretion layer p,.. and the envelope e, are calculated from

% = ZX]-% (159)
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where Z; is the atomic number of species j and m; its mass number. Two limiting cases

are considered:

® [leny > [lace — the envelope is heavier than the accreted material so no mixing occurs.

The surface abundance is given by X’ Any subsequent wind loss removes the

Jayer*

accretion layer before removing mass from the envelope.

® lieny < ltace — the accretion layer is heavier than the envelope. The accretion layer
and envelope are completely and instantly mixed by a thermohaline instability and
the situation is identical to the convective case. When jieny = ftaec mixing is assumed
to occur due to instabilities introduced during the accretion process. This situation
is extremely unlikely to occur unless the stars have an identical surface composition,
e.g. two low-mass main-sequence stars, in which case the whole process is irrelevant
anyway. Mixing does not extend into the core because dilution within the envelope
reduces the molecular weight and in addition it is unlikely that mixing can occur

across burning shells.

Degenerate material is assumed to have a high molecular weight @ = 10 such that degen-
erate material always mixes with other degenerate material and non-degenerate material
always floats on the surface of white dwarfs. The study of envelopes on WDs is complicated

and beyond the scope of this work.

4.3 RLOF and Common Envelopes

The prescription used in the BSE code for RLOF is described in detail in Hurley et al.
(2002). There are several consequences for nucleosynthesis. The first is the truncation of
phases of stellar evolution of the primary when the radius is large such as the GB and AGB.
This means there are relatively fewer giants in binaries and the nucleosynthesis associated
with dredge-up in giants does not take place, to a greater or lesser extent depending on the
initial binary distributions. The BSE algorithm deals with this already, it is just a matter

of not calling the appropriate sections of code.
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The other effect of RLOF is due to accretion on to the secondary star. RLOF need not
be conservative so matter can be lost to the ISM directly. Rapid accretion can also lead
to a common envelope forming around the stars which may be expelled into the ISM. The
cores of the stars may merge in the envelope forming a new star. If there is no common
envelope, the stars may completely merge (section 4.4) or relatively slow accretion can
lead to explosive events such as novae (section 4.5.1) or type Ia supernovae (section 4.5)
or the acquisition of a new stellar envelope and rejuvenation of the star. The situation
is complex and far from fully understood so while the Hurley et al. (2002) prescription is

used to follow the accreted matter there is always an element of doubt about the outcome.

Non-conservative RLOF is the dominant mass-loss mechanism in low-mass binaries. This
is because the primaries are deeply convective low-mass (M < 0.7Mg) MS stars so mass
transfer occurs on a dynamical timescale. The stellar radius expands more quickly than
the Roche lobe as mass is lost and the secondary, most likely also a MS star, has a long
thermal timescale so cannot adapt quickly to the accretion and the mass is lost from the
system. Dynamical mass transfer may also lead to the secondary filling its Roche lobe as

the orbit shrinks and the stars merge - this is dealt with below (section 4.4).

When a giant transfers mass on a dynamical timescale to a companion with a long
thermal timescale, such as a MS star, a common envelope forms if contact is avoided. The
giant fills the Roche lobes of both stars so that its compact core and the companion star
are contained in the envelope. As the envelope expands it slows relative to the orbital
motion and by a magical (i.e. uncertain) mechanism energy is transferred from the orbit
to the envelope. This energy may be enough to completely drive off the envelope, leaving
the compact objects and yielding its contents to the ISM, or the cores merge and stellar
evolution continues. Thus common envelopes provide a mechanism for the creation of close
double-degenerate binaries and cataclysmic variable stars. The prescription of common-
envelope evolution from HO2 is used. It contains two free parameters, first Acg which

affects the initial envelope binding energy
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G MlMenvl + M2Menv2
ACE Ry Ry ’

Epina; = — (160)

where Aqg is calculated according to the prescription in appendix E. The initial orbital

energy of the cores is

1 GMclM(:Q

Eorb,i - 9 p
i

: (161)

where a; is the initial semi-major axis at the onset of the common-envelope phase. The
spiral-in of the cores and orbital energy transfer to the envelope is parameterized by acg

such that if the envelope is completely removed

Frindi = acr(Eob,r — Eorbyi) » (162)
where acyp ~ 1 and
1 GM Mo
By g = —— o eter 163
b= T, (163)

where ay is the final separation. This can be solved to give ay, the final separation, and

the entire envelope escapes to contribute directly to the (binary) stellar yield.

However, it is also possible that RLOF occurs for either core as the spiral-in process
occurs, in which case the cores merge and some of the envelope remains. The binding

energy remaining in the envelope is then given by

1 GMCI Mc2

FEhind,f — Fhind,i = QcE (5&7 + Eorb,i) : (164)
L

where q, is the separation at which RLOF occurs. A new giant star forms with a
core composed of the merged progenitor cores. The mass of the new star is calculated
using a Newton-Raphson iteration (see HO2 for the gory details) and if any mass is lost it

contributes to the stellar yield.

It is assumed that common-envelope evolution occurs quickly relative to the nuclear
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burning timescales at the surface of the spiralling cores so there is no nuclear processing.
This is partly for simplicity and partly because the process is already uncertain. Detailed
and reliable hydrodynamical models of common envelopes are lacking. Hurley et al. (2002)
suggest that a value acg =~ 3 is possible if other energy sources such as nuclear burning
shells, magnetic fields or recombination of ionization zones' in giants are included. For this
reason « is treated as a free parameter. It is also assumed that no matter accretes from

the common envelope on to either star (Hjellming & Taam, 1991).

4.4 Stellar Mergers

The treatment of stellar mergers in HO2 deals with each of the 15x15 possibilities involved,
there being 15 stellar types. Symmetry reduces this to half but still there are more than
100 possibilities. Fortunately, for nucleosynthesis, all that is required is knowledge of where
the material goes. Rarely does a stellar merger contribute to the stellar yield and then
usually via a supernova which is dealt with separately. This approach assumes there is no
additional nucleosynthesis during the merging process. The new stellar envelope is formed

by one of the following routes:

1. Star 2 is compact compared to the envelope of star 1 so star 2 merges with the core
of star 1 to form a new core. The new envelope composition is the same as that of
star 1 prior to the merger. This happens when a helium star or WD merges with a
giant. It is also possible to form a new envelope from the whole of star 1 if star 1
is a MS star accreting on to e.g. a helium star. The MS star is less compact so the
new core is formed from the helium star and the envelope from the MS star. Again,

all of the envelope comes from star 1.
2. As above with 1 and 2 interchanged.

3. Both cores are compact compared to their envelopes so the new envelope is a mixture

of the existing envelopes and both cores sink. White dwarfs, MS and HeMS stars

LAt least one of the authors claims he does not believe this!
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Primary Stellar Type
2. 01 23 45 6 7 8 9 10 11 12 13 14
=1 03 333 33322 2 2 2 2 4 4
20 113333333222 2 2 2 4 4
€| 23333333222 2 2 2 4 4
Tl 3(33333332%22 2 2 2 4 4
54333333322222244
| 513333333222 2 2 2 4 4
g 6(3333333222 2 2 2 4 4
711 11 11113333 2 2 4 4
811 1 1 1 111333 3 2 2 4 4
911 1 1 1 111333 3 2 2 4 4
/1 1 1 1111333 3 2 2 4 4
1yt 1 1 1111111 1 3 3 4 4
2/1 11 1111111 1 3 3 4 4
134 4 4 4 4 4 4 4 4 4 4 4 4 4 4
1414 4 4 4 4 4 4 4 4 4 4 4 4 4 4

Table 9: Collision matrix. See text for details.

are treated as having no core, so are composed purely of an envelope because if they
are dense enough to sink through the other star’s envelope they will be caught by

conditions 1 or 2 above.

4. A Thorne-Zytkow object is formed by the merger of a NS/BH with a star of stellar
type < 9. The envelope is removed instantaneously without any extra nucleosynthe-
sis. WDs and other NS/BHs collide with a NS/BH to form a heavier NS/BH (BH if

M > 1.8 M) again without any nucleosynthesis.
The route taken by each type of merger is shown in table 9. Note that collision of two

HeWDs may lead to an explosion (see below).

4.5 Type la Supernovae and AlCs

Three types of type Ia supernovae are considered here. Edge-lit detonations are thought

to occur when 0.15 Mg of helium-rich matter is accreted on a dynamical timescale on to
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a sub-Mc, COWD. This was modelled in 2D by Livne & Arnett (1995) who made eight
models with CO core mass 0.55 < Mco /Mg < 0.9 and helium layer mass My, between 0.1

and 0.2 M. The yields are fitted to functions of the form

AM(O,165 -+ b165MCO + 6165M%0) X (1 + d165MHe) (165)

where AM is the amount of mass ejected in the explosion and the coefficients are given
in table B20. COWDs that accrete hydrogen-rich matter are treated in the same way,
with the hydrogen steadily burnt to helium then CO on the COWD surface prior to the

explosion.

COWDs that accrete enough mass by steady accretion of hydrogen or helium-rich mate-
rial, which is burned to CO, accretion of CO from another COWD or owing to a COWD-
COWD merger, to reach the Chandrasekhar mass are blown up with the yields of Iwamoto
et al.’s (1999) model DD2. They claim this model best fits observed spectra and lightcurves.
The DD2 model is preferred to the more commonly used W7 model of Nomoto, Thiele-
mann & Yokoi (1984) because W7 predicts significantly higher ®*Ni/*Fe ratios than solar.
Yields are listed in table B22.

Helium white dwarfs which accrete helium-rich matter until the total mass exceeds
0.7 Mg explode with the yields of Woosley, Taam & Weaver (1986) as shown in table B21,
scaled to the ejected mass AM by a factor AM/0.664M,. Strictly these yields are appli-
cable only for the accretion of helium on to the helium WD but are used in the absence of
any other models for the merger of two HeWDs. Such events are probably too common to

represent SNela but may be responsible for some low-luminosity explosions.

Accretion-induced collapse to a NS owing to accretion of material on to an ONeWD,
which is not really a SNIa but only occurs in binaries, produces zero yield according to
Nomoto & Kondo (1991). This has recently been challenged by Qian & Wasserburg (2003)
who speculate that there may be some r-processing in a wind leaving the nascent NS. The
situation is unclear and in any case there are no published yields to include in the synthetic

model so the yield is set to zero.
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4.5.1 Novae

Accretion of hydrogen-rich material on to a WD at a rate M /(Mg yr™) < 1.03 x 1077
(Warner, 1995) leads to unstable nuclear burning in explosive events called novae. During
the explosion hydrogen is converted to helium and the temperature is high enough to
activate the CNO, NeNa and MgAl cycles. Novae are thought to contribute a significant
fraction of the Galactic content of 3C, N and '"O. The most complete set of yields
yet published is that of José & Hernanz (1998) who evolve 14 sequences spanning a
CO/ONeWD mass range of 0.8 — 1.35 M. Mixing of accreted material with the surface
layer of the WD is essential to the explosion and mixing fractions of 25—75% are considered
with the mixing fraction f,,, a free parameter with a default value of 50%. Models CO1-6
and ONel-7 are used for fitting to CO and ONe novae respectively, model CO7 is ignored
(it uses different opacities to the other models). The fits are listed in appendix B11. The
fraction of accreted matter retained after the explosion €4, is set to 1073 although this is
also a free parameter. The small value of €,,, means these systems are unlikely to grow
significantly in mass and explode as SNela.

Accretion of hydrogen by a HeWD was assumed to give similar novae in the original BSE
model, however there is nothing published in the literature which relates to this probably
quite common situation. It is now assumed that accretion of 0.01 M, of hydrogen reignites
helium and turns the star into a low-mass HeMS star, although there is no evidence in
the form of detailed models to support this hypothesis. It burns its helium and becomes
a COWD, resuming nova explosions in a similar way to the original BSE, albeit a few Myr

later and at a slightly higher mass.

4.6 Other Binary-specific Effects

Observations of RS CVn binaries led Tout & Eggleton (1988) to introduce extra mass loss
from cool giants owing to the effect of tides produced by a close companion. They give an

expression
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L 1 R\’
M = Mg |1+ Bmax (— ) : (166)

2" Ry,

where Ry, is the Roche-lobe radius, MR is the Reimers mass-loss rate and B ~ 10*. As
pointed out by HO2 it is unclear whether this should be applied to all stars so B is a free

parameter, usually set to zero.

The impact of a supernova on the companion star is not included in BSE, other than its
effect on the orbital dynamics. Matter from the SN explosion can either be accreted by
a companion or can strip the companion of matter. The latter is more likely (Wheeler,
Lecar & McKee, 1975; Marietta, Burrows & Fryxell, 2000) and the companion star probably
survives the stripping (Taam & Fryxell, 1984). Accretion may occur from a weak supernova
such as an AIC and such a process may explain stars which are simultaneously r-process
and s-process rich (Qian & Wasserburg, 2003). Given these uncertainties mass accretion

and stripping from SNe are not currently included in the synthetic model.

The nucleosynthesis model used for low- and intermediate-mass stars (chapter 2) contains
functions of either the instantaneous mass M (for first and second dredge-up) or the mass at
the start of the TPAGB (for third dredge-up and HBB) so is not affected by mass transfer
in binaries. The massive star nucleosynthesis model (chapter 3) is different because it
necessarily uses Myavs as a fitting parameter. This is a problem during binary evolution
because it is likely, in binaries where both stars are of high mass, that a star accretes
significant amounts material from its companion. The accreted material is dealt with in
section 4.2 above. It probably mixes by a thermohaline instability with the stellar envelope.
In itself this is an approximation because the star is processed internally so should not be
mixed through its entire depth. However this is a problem that cannot be addressed without
full evolution models which include composition gradients. The real problem occurs when
the star evolves further because its surface abundances evolve according to a prescription
based on Mzans rather than the larger M. For this reason Mzans is set to M when
matter is accreted on to a MS star. The ZAMS surface abundances are also changed to the

abundances after the accretion. The star then behaves as a MS star more massive than it
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originally was and which has different initial abundances.

Accretion on to a post-MS star is not treated in the same way. This would lead to
inconsistencies but for several important effects. First, mass loss is strongest in post-MS
stars, so there is unlikely to be any mass accretion because the winds shock. Second,
if both stars have evolved off the main sequence then both will have large radii and a
common-envelope phase is likely. As an example, for a solar metallicity, circular binary
with primary mass M; = 30.000 My and period P = 100d, the secondary must have a
mass My > 29.968 M, in order to evolve off the main sequence before mass transfer occurs
and if this is the case common-envelope evolution follows with the loss of 2/3 of the mass
of the system. The region of parameter space in which there are problems is very small

indeed and is not resolved in the grids of stars used in chapters 5-7.

There is also the problem of stellar phases not modelled by any of the full stellar evolution
codes. A good example is the low-mass helium star formed by stripping off a RG’s envelope
before core helium burning has finished. In this case the same fitting formulae are used as
deal with helium stars (see section 3.4). Most of these systems then go on to form COWDs
so the excess C and O given by the helium star fits is a reflection of their true behaviour.
Of course, there is no way to test whether the fits are correct without investigation using

detailed models beyond the scope of this dissertation.

Supernova kicks are included in exactly the same way as in Hurley et al. (2002) with
a kick imparted to the companion according to a Maxwellian velocity distribution with

dispersion ogy. Typically osx = 190 kms™! (Hansen & Phinney, 1997).

The Eddington limit may be applied to accreting neutron stars and black holes (Cameron

& Mock, 1967),

2.08 x 1073

—czmr— (Bs/m/ Ro) Mo yr™! (167)
H1

MEdd = fEDD

which sets a maximum value to the mass-accretion rate. The free parameter fgpp is

typically either 1.0 or 10°, i.e. there is either a limit or not.
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4.7 Example Systems

Figures 51 and 52 show the evolution of a binary with initial parameters M; = 30 M,
My =20Mg, P =1000d, e = 0 and Z = 0.02 with the MM mass-loss prescription. Mass
transfer owing to RLOF from star 1 to star 2 occurs at about 6 Myr while star 1 is in the
HG and star 2 is on the MS. Star 2 accretes 15 Mg, of hydrogen-poor, helium and nitrogen-
rich material raising its mass to 35 M, and altering its surface abundances. Star 2 then
evolves like a 35 My ZAMS star with excess helium and nitrogen in the envelope and less
hydrogen, carbon and oxygen. It is also clear that most carbon and oxygen production is

during the helium star phase.

Another interesting example is M; = 6 My, My = 3Mg and P = 40d (see figure 53).
The initial separation, about 100 R, is small enough that the primary overflows its Roche
lobe while on the late-HG and red-giant branch (at 68.2 Myr), so a common envelope forms.
The envelope is lost leaving a 1.1 M, helium star and the slightly polluted secondary. The
helium star evolves on the HeMS to form a HeHG and again expands, overflows its Roche
lobe and transfers 0.24 M, of material to the secondary. The important point is that this
material is of very different composition to the original star — 12C ~ 0.4, N ~ 0 and
160 ~ 0.2. The primary becomes a 0.82M, COWD. The secondary is a 3.28 M, MS
carbon star: 12C = 0.036, O = 0.027 so C/O ~ 1.8 by number. At 320 Myr, while in the
its HG phase, the secondary overflows its Roche lobe and a common envelope forms. There
is not enough energy in the orbit to drive off the envelope, even though acg = 3, so the
cores merge and a new CO core, with surrounding helium-burning shell, is formed. The
now single star is an EAGB star of mass 3.44 My with a 0.82 Mg CO core which goes on
to evolve on the TPAGB — but note it is already a carbon star! The star has a peculiarly
high core mass for its total mass so its high luminosity drives the envelope off rapidly.
The few thermal pulses that occur add little extra carbon to the envelope and it is not
massive enough to undergo HBB. It loses its envelope in 10° years and forms a 0.85 M
COWD remnant. Such carbon-rich EAGB stars, known as extrinsic carbon stars, are one

explanation of the mysterious dim carbon stars (Izzard & Tout, 2004).
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M,=30 M,=20 period=1000

3.5e+01 T T T T T T T T T
F “E
3.0et+01 § i
H
2.5e+01 | (.
® i
b ] i
B20e+01 |- - B 1
=
1.5e+01 | 1
1.0e+01 ~ 1
5-0e+00 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10
. Time/Myr .
M,=30 M,=20 period=1000 M,=30 M,=20 period=1000
7.0e:01 . . . 7.0e:01 , . . . . . . .
6.0e-01 | , . 6.0e-01 | L ey
5.0e-01 1 5.0e-01 | o
40e-01 | | 1 40e01 | 1
< | <
30e01 i 8 30e01 | 8
t
20e01 | i ] 20e01 | ]
10e01 f | {1 10e01 | 1
0.0e+00 L £ ! ! ! 0.0e+00 ! ! ! ! ! L L L L —
5 10 15 20 25 30 35 0 1 2 3 4 5 6 7 8 9 10
Mass/M ® Time/Myr
M,=30 M,=20 period=1000 M,=30 M,=20 period=1000
1.0e-00 — . . . 1.0e-00 . . . . . . . . —
9.0e01 | 1 9.0e01 | .
8.0e01 | 1 8.0e-01 | i
7.0e01 | 1 7.0e01 | .
> 6.0e01 | 1 > 60e01 s
50e01 F E 50601 | ~
4.0e-01 |- _/’—\:y‘ 4001 - ] i :‘
30e01 | 1 30e01
208‘01 1 1 1 1 1 20e_01 1 1 1 1 1 1 1 1 1
5 10 15 20 25 30 35 0 1 2 3 4 5 6 7 8 9 10
MassM ® Time/Myr

Figure 51: Stellar mass vs time, surface abundances Xg;, Xges vs instantaneous mass and
138 vs time for a binary with initial parameters M; = 30My, My = 20M, and
P =1000d (MM wind loss). Star 1 is red, star 2 is green.
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139



MasslM®

N14

4 Binary Stars

M1=6 M2=3 PER=40

T T T

! ! ! !

0.0009
0.0008
0.0007
0.0006
0.0005
0.0004
0.0003
0.0002

0.0001

50 100 150 200
Time/Myr

M1=6 M2=3 PER=40

250

300

350

l T T T

! & 1 lo-

0 50 100 150 200
Time/Myr

250

300

350

C12

016

0.8

M1=6 M2=3 PER=40

0.7

0.6

05

04

03

0.2

0.1

T & T e

! ! !

! !

0.3

0.25

0.2

0.15

0.1

0.05

50 100 150 200
Time/Myr

M1=6 M2=3 PER=40

250 300

350

T T T T

1 ! ! !

! !

o

50 100 150 200
Time/Myr

250 300

Figure 53: Extrinsic carbon star formation from a dwarf carbon star. See text for details.
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Figure 54: Formation of a nitrogen-rich giant from a dwarf carbon star. See text for details.

As a final example, a system like the above but with M; =7 M., My = 6 My and P =
4 days undergoes a similar dynamic evolution. Again the primary transfers mass during
its HG and HeHG phases to the secondary which becomes a dwarf carbon star with 12C =
0.031 and 50 = 0.024 (C/O = 1.72). At this stage the secondary surface N (= 0.0008) is
low because the primary star has nearly zero nitrogen surface abundance. However, when
the second common-envelope phase occurs the resulting single star is massive enough, at
around 6.8 M, for HBB to be effective. Within 5 x 10* years most of the envelope '2C is
converted to N (figure 54) giving terminal abundances of 2C = 0.005, 0 = 0.022 and
YN = 0.038. This star is not a carbon star, rather a peculiar oxygen- and nitrogen-rich

giant.
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5 Stellar Yields: Fast Parameters

The previous three chapters presented a synthetic model for stellar nucleosynthesis. It
now remains to answer the question of whether binaries are important in the calculation

of stellar yields and how the yields vary with changes in free parameters.

5.1 Introduction

In order to calculate the yield of any isotope from a population of stars initial distributions
must be chosen. Single star masses M are distributed according to the Initial Mass Function
(IMF). In the case of binaries, initial distributions of primary masses M, secondary masses
M, , or the mass ratios ¢ = M, /M, and separations a, must be chosen. These distributions
are not well constrained by observations. Accurate observations of initial ¢ or a, or more
likely the period P, are constrained to a few hundred nearby binaries (Popova, Tutukov &
Yungelson, 1982; Abt, 1983; Goldberg, Mazeh & Latham, 2003). Star formation theory and
modelling, even with present-day SPH simulations, is some way from a prediction of how,
and how many, single or binary stars form. However various choices can be made based
on the observations. In what follows populations of single or binary stars are considered
rather than a mixture of the two.

Given a chosen set of these distributions a logarithmic grid is set up in one-dimensional
M space for single stars or 3D M;—Ms—a space for binary stars. The grid is split into n
stars per dimension such that each star represents the centre of a logarithmic grid-cell of

size 0V where
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0ln M single stars
oV = (168)
O0ln M;6InMydlna binary stars
and
1 max ~ 1 min
Slnz=—2 1 fmin (169)
n

where x represents M, My, My or a and T and xny;, are the grid limits. The total
number of stars is denoted by N such that N = n for single stars and N = n? for binary

stars.

The probability of existence of star ¢ is given by

op; = WOV, = WV, (170)
because 0V is a constant. Here

In M; single stars
v ¥ (In M;) g ar)

¥(In My;) ¢(In My;) x(Ina;) binary stars
is the probability density function for each set of stars. The single star IMF is denoted
by ¢(InM;). In the case of binaries the primary star IMF is given by (ln My;), the
secondary star IMF by ¢(In Ms;) and the initial separation distribution by x(Ina;). Note

that ¢(In Ms;) can be calculated via ¢(g;) where ¢; = Ms; /Mj; is the initial mass ratio.

For any output value, such as mass ejected of a given isotope, (; of the star representing
the grid cell 6V; a weighting factor dp; must be applied so that the sum of the (; represents

the value for the whole population of stars

¢= 252%’ Gi - (172)

In the above expression dp; represents the set of fast parameters which can be changed
without having to rerun the stellar models. Once a whole set of (; have been constructed

it is a relatively quick process to sum over them for a given W.

144



5.2 Default Model Sets

The construction of many sets of (; represents changes in the set of slow parameters
which depend on the choice of input physics. The construction of many datasets takes
longer than a change in the distributions ¥ given the (;, hence the name of this parameter
set. This chapter deals exclusively with the fast parameters, chapter 6 deals with the slow
parameters.

The usual condition on any probability distribution

means ¥ must be suitably normalized.

5.2 Default Model Sets

In order to construct a set of chemical yields a default set of slow parameters must be
chosen upon which the fast parameters are varied. These are values thought to be typical
in the literature or as were used in previous studies made with the BSE code (Hurley et al.,

2002).

e Maximum stellar evolution time ¢, = 13.7Gyr — the WMAP result (£0.2 Gyr;
Bennett et al., 2003) for the age of the Universe. It turns out (see section 61) that

yields are not too sensitive to variation of #ay.

e 7/ = 0.02 — solar metallicity. The models are most likely to be as correct as possible
at this metallicity, especially the phenomenological WR models which are fitted to
Z = 0.02 models.

e Initial abundances are taken from Anders & Grevesse (1989).

e Eccentricity e = 0. This is for simplicity. Most interacting binary systems are
expected to be circular owing to tidal circularization of the orbit. Some systems may

exchange mass by winds rather than RLOF in which case non-zero eccentricity may be
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important but this is neglected here in favour of a reduction in the parameter space by
one dimension (and a corresponding reduction in grid runtime by a factor n &~ 100).

Some consideration of a change in initial eccentricity is given in section 6.2.9.

e The mass-loss prescription of Hurley et al. (2002) is used for all stellar evolution
phases except the TPAGB when the prescription of Karakas et al. (2002) is used. This

is because the synthetic TPAGB model is calibrated with their mass-loss prescription.

e Common-envelope parameter acg = 3. Hurley et al. (2002) found acy = 3 is required

to reproduce the observed number of double-degenerate binary systems.
e No Eddington limit for accretion (fgpp = 10°).
e s-process *C pocket mass factor £ = 1.0.
e SN kick velocity dispersion ogy = 190kms™" (Hansen & Phinney, 1997).
e No enhanced binary wind loss (B = 0).
e Bondi-Hoyle accretion factor apyg = 3/2.
e The fraction of matter retained in a nova explosion fuo. = 1073 (Hurley et al., 2002).
e The Hurley et al. (2002) black hole mass prescription.

e The calibration of third dredge-up found by comparison to SMC and LMC carbon
star luminosity distributions: AM. min = —0.07 and A, = 0.8 — 37.52 = 0.05.

It is necessary to make a selection of isotopes for study because the synthetic model cur-
rently predicts 126 isotopes. Some isotopes closely follow the behaviour of others such as
the s-process groups, the o elements from type Ia supernovae etc. and so are represented

by just a few isotopes. Table 10 lists the isotopes chosen.
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5.3 Definition of the yield

'H, “He hydrogen, helium
120, 130, 14N, 15N, 160, 170 CNO
20Ne, ?'Ne, #2Ne, *Na NeNa
24Mg, 25Mg, ZGMg, ZGAL 2TAL MgAl
382G, 36 Ar, 40Ca, #Ca, 8Ti, *2Cr, Fe | SNIa and HeWD-HeWD mergers
65Cu SNII
Ba, Pb, Y, Kr S-process

Table 10: Isotopes used in fast parameter comparisons.
5.3 Definition of the yield

There are many ways to define the yield of a particular isotope j from a generation of stars.

The integrated mass lost from star ¢ as isotope j during its lifetime ¢, is

tmax .
0
where M (t) is the rate of mass loss from the system, X/ (¢) is the surface abundance of j
and 0p; is the probability of the star’s existence. The total mass lost from a population of

stars as isotope 7 is then

v = ovy. (175)

More useful is y; defined as the mass lost as isotope j per unit mass input to stars

Y;/ > [M;op;] single stars
Yj , (176)
Y;/ >0 [(My; 4 Ms;)op;]  binary stars

or y; the mass lost as j per unit mass lost — i.e. the mass fraction of j in the ejecta

_ Y;
O Ops [ M(t)dt

Yj (177)
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There is also py; defined in terms of the enhancement of isotope j during the lifetime of
the star relative to the initial abundance and normalized to the initial mass of the star!
o 5p2 tmax 3
oparij (i, J, Mi) = — M;AX;;dt, (178)
where M; is the initial mass of the (single) star and AX;; = X;;(t) — X;;(0) is the change
in surface abundance of isotope j between its birth and time ¢. For binaries the idea is the
same but the expression slightly different

o 5 i tmax . .
0P (4, J, My, My) = P ) / (M1, AXq5 + My AXy;) dt (179)
0

(My; + My,
where the AX now refer to each star.

The population enhancement of isotope j is then

Note pys; can be negative if an isotope is consumed rather than created.

In what follows the simpler form y; is used because it is always positive.

5.4 Numerical Resolution

The number of stars N required to obtain an accurate sum of the yield relative to mass
input y (eq. 176) is constrained by considerations of accuracy and CPU time. Figure 55
shows y(N) relative to the default dataset for single (red) and binary stars (blue) for a
selection of important isotopes. For single stars the default value is N = 10* and all the
yields converge to within 0.5% of their default values for N > 5 x 103.

Binary stars are more unpredictable owing to the increased number of grid dimensions
and the plethora of interaction mechanisms involved. Supernova kick velocities are mod-

elled by a Monte-Carlo process so slight differences in yields are also because of this. The

IThis is the form used in section 2.15.
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5.4 Numerical Resolution

Isotope | Resolution Error/% | Timestep Error/% | Isotope | Resolution Error/% | Timestep Error/%
H 1.0 0.02 Mg 0.3 0.25
2¢ 1.4 0.2 #Ca 0.03 0.15
14N 0.9 1.8 Fe 0.04 0.22
160 0.6 0.3 55Cu 0.1 0.02
22Ne 1.7 0.2 Ba 0.5 0.1

Table 11: Maximum errors on the integrated binary star yields y due to resolution and
variable timestep effects.

default value n = 100 corresponds to a 3D grid of N = n® = 10° points. This is chosen
because 10° models take approximately 14 hours to run on a 1.4GHz Athlon PC. Fig-
ure 55 has high-resolution, n > 100, binary data points at n = 100, 105, 152 and 200.
The maximum error on the yield for each isotope when using an n = 100 data set can be
approximated by the maximum difference between the n = 100 set and any of the n > 100
sets. Table 11 shows that the errors (marked Resolution Error) are smaller than 1.7%.
Table 55 also lists the errors induced when the timestep during the TPAGB phase is mod-
ulated by a constant factor less than 1 (columns marked Timestep Error). The timestep
is multiplied by a factor 0.1 and 0.5 and the maximum difference between the results and
the standard timestep tabulated. Only N is affected by more than 0.5%. It is produced
copiously by HBB so small changes in the burning time change the yield by 1.8%. It will

be shown below that such errors are negligible compared to other sources of uncertainty.
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Figure 55: Variation in yield relative to n = 10*
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5.5 Single/Primary Star Mass Distribution

5.5 Single/Primary Star Mass Distribution

The distribution of single stars, the Initial Mass Function (IMF), has long been known to
approximate a power law (Salpeter, 1955), at least for stars of mass greater than about
1 My . Below this mass the power law flattens off and at high mass there is some uncertainty
(Kroupa, 2002). The default IMF used here is that of Kroupa et al. (1993, KTG93). This,
the Salpeter IMF and the one of Chabrier (2003) are compared.

The IMF is defined as a probability density function of initial stellar mass M

d
(M) =

(181)

such that dp = (M) dM is the probability of a star’s existence between masses M and
M +dM. Tt is assumed that all stars form in the mass interval mo < M /Mg < 80.0 where
mg is usually 0.1.

Note that

dp
T = M) = My(M) (182)

is used in the grid described above.

The Salpeter IMF is a single power law in M

W(M) = AM® (183)

with o = —2.35 over the assumed mass range 0.1 < M /Mg < 80 and A normalized such
that

/ SOQ/J(M)dM =1 (184)

1

which gives

1+«

A= e o1

— 0.06031 . (185)

151



5 Stellar Yields: Fast Parameters

The KTG93 IMF is a three part power law

(

0
ar(M/Mg)™
W(M) =< ay(M/Mg)”
az(M/Mg )P
0

\

M/ Mg <myg

mo < M/Mg < my

my < M/Mg < my (186)
me < M/Mg < Mipax

m > Mmax

where p; = —1.3, po = —2.2, p3 = —2.7, my = 0.1, my = 0.5, my = 1.0 and mma, = 80.0.

The normalization condition

mo

/ T (MM = 1 (187)

together with continuity at m; and mo leads to

p2—p1

1

-1 my 1+p1 1+p1 1+p2 14+p2
a = m —-m + (m —-m —_—
2 Ty o)+ m s
m};*ps 1+p3 1+ps3
(Ml —my ™) (188)
1+ps
a; = agm* M (189)
and
az = agmh> " (190)

A recent alternative IMF is that of Chabrier (2003)

Ao Ay exp [—(logyy M /Mg — log,g Mc)/20%] M < 1M,
ApAs(M /M) ™ M > 1M,

Y(logy M) =

(191)

where A; = 0.158, Ay = 4.43 x 102, Mg = 0.079, o = 0.69, 2 = 1.3 and A, = 0.12024 is
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5.5 Single/Primary Star Mass Distribution

a constant which has to be introduced because Chabrier’s IMF is not suitably normalized

over the entire mass range. This is related to ¥(M) by

Y(log,g M)

(M) = M In(10) (192)

so at high mass ¢(M) is a power law with slope a = —2.3 (compared to KTG93’s —2.7).

Figure 56 compares the above IMFs. The Salpeter IMF reduces the number of intermediate-
mass stars relative to the KTG93 IMF and compensates for this with an increase in low-
and high-mass stars. Low-mass stars with M < 0.95 Mg do not leave the main sequence
in 13.7Gyr and so do not contribute to the stellar yield. However, the mass function
is normalized over the entire mass range so these stars and the lower-mass limit mg are
still important. The Chabrier IMF is similar to KTG93 for M < 2M, but over-produces
intermediate- and high-mass stars by up to a factor 10 at M = 80 My, relative to KTG93.

This is indicative of the present-day uncertainty in mass determinations of high-mass stars.

Table 12 shows the yield y relative to mass input to stars for the KTG93, Salpeter and
Chabrier IMFs. The default data set is KT(G93, the other sets are shown as percentage
fractions of the default so an under-production relative to KTG93 is denoted by a figure
less than 100% and over-production by a figure greater than 100%. The rightmost column

shows the limits between which the yield varies for the data sets in the table.

The Salpeter IMF over-produces everything relative to KTG93 owing to the excess of
high-mass stars. The increase in s-process elements and 3C is small because these are
mainly produced in intermediate-mass stars. Typically y increases to about twice the
KTG93 value for isotopes heavier than helium (153% for N, 241% for 10). The SNIa
isotopes, except °Fe from SNell/Tb/c, are produced in tiny amounts due to the lack of a
production mechanism in single stars so any yield is due to the presence of the isotope at
t = 0. These isotopic yields increase with the Salpeter IMF owing to the increased number
of massive stars and associated wind loss. The yield of the SnIT isotope %°Cu also doubles

due to the excess number of massive stars and core-collapse supernovae.

The Chabrier IMF shows a similar pattern to the Salpeter IMF but is even more extreme.
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IMF KTG93 Salpeter | Chabrier
a=—22
Isotope y Relative % Limits
Yields %

'H 1.857 x 1071 116 200 (1.86 < 1.86 < 3.72) x 107"
‘He 1.044 x 107! 137 227 (1.04 < 1.04 < 2.37) x 107%
L2 4.589 x 1073 209 320 (4.59 < 4.59 < 14.70) x 1079
3¢ 3.609 x 1075 124 213 (3.61 < 3.61 < 7.67) x 107%
UN 9.562 x 1074 153 250 (9.56 < 9.56 < 23.95) x 10~
PN 1.185 x 107¢ 188 295 (1.18 < 1.18 < 3.50) x 107
160 8.372 x 1073 241 364 (8.37 < 8.37 < 30.44) x 107%
70 3.398 x 107¢ 103 186 (3.40 < 3.40 < 6.31) x 107
2Ne | 1.178 x 1073 202 313 (1.18 < 1.18 < 3.69) x 1079
2Ne |3.882x107° 194 305 (3.88 < 3.88 < 11.83) x 107
2Ne | 3.776 x 1071 189 295 (3.78 < 3.78 < 11.14) x 10~™
BNa | 4.457 x 107° 177 283 (4.46 < 4.46 < 12.61) x 107%
Mg | 3.715 x 1074 208 321 (3.71 < 3.71 < 11.91) x 10~™
BMg | 7.992 x 107° 201 313 (7.99 < 7.99 < 25.05) x 1079
BAl | 4.698 x 1077 219 339 (4.70 < 4.70 < 15.93) x 10777
Mg | 8.353 x 107° 211 326 (8.35 < 8.35 < 27.19) x 1079
ZTAl | 6.130 x 107 225 343 (6.13 < 6.13 < 21.03) x 1079
328 4.278 x 1074 210 326 (4.28 < 4.28 < 13.93) x 107™
6Ar | 8.542 x 107° 216 334 (8.54 < 8.54 < 28.52) x 1079
0Ca | 5.265x 107° 207 321 (5.26 < 5.26 < 16.90) x 107%
“Ca |9.134 x 1077 185 292 (9.13 < 9.13 < 26.69) x 10777
BT | 1.704 x 107° 189 298 (1.70 < 1.70 < 5.08) x 107
2Cr | 5.687 x 107¢ 147 241 (5.69 < 5.69 < 13.69) x 107
%Fe | 1.018 x 1073 190 300 (1.02 < 1.02 < 3.05) x 1079
5Cu | 9.997 x 1076 205 324 (10.00 < 10.00 < 32.35) x 1079
Ba 8.060 x 107 116 201 (8.06 < 8.06 < 16.23) x 107%
Kr 9.696 x 1078 119 208 (9.70 < 9.70 < 20.21) x 107
Pb 7.660 x 107 118 204 (7.66 < 7.66 < 15.66) x 107

Y 1.496 x 1078 104 187 (1.50 < 1.50 < 2.80) x 107

Table 12: Single star yields relative to mass input y with variation of the single star IMF.
The leftmost column gives the isotope, the second column the default yield y of
the isotope and the next two columns the yield relative to the default with the
Salpeter or Chabrier IMF. The final column shows the limits between which y
varies, the central value is the default value.
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Figure 56: Single star IMFs.

Both intermediate- and high-mass stars are over-produced with respect to the KTG93 IMF,
so the yields of all the isotopes increase to between 186 and 364% of the KTG93 values.
The s-process elements increase by about 200%, the SNIa and SNIb/c/IT isotopes by about
300%, N, produced by intermediate-mass AGB stars and high-mass WR stars, by 250%,
while 2C and °0O increase by 320% and 364% respectively owing to an increased number
of WR stars and core-collapse supernovae. Because total probability must equal 1 some
stars must be removed to make way for these excess intermediate- and high-mass stars. In
this case these stars are around 0.7 M), see figure 56 where the green line drops below the
red line, and so make no contribution to the stellar yield and so there is no associated drop
in the yield.

The minimum possible stellar mass mg is 0.1 for the KTG93 IMF. As explained above,
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IMF KTG93 KTG93 | KTG93 | KTG93
mo=0.81]mg=121]mg=28.0
Isotope y Relative % % Limits
Yields %

TH [1.857x 107! 202 241 230 (1.86 < 1.86 < 4.47) x 107
‘He |1.044 x 107! 202 245 315 (1.04 < 1.04 < 3.29) x 107%
20 | 4.589 x 1073 202 266 643 (4.59 < 4.59 < 29.49) x 1079
BCO ] 3.609 x 1072 202 250 239 (3.61 < 3.61 < 9.02) x 107%
UN ] 9.562 x 1074 202 257 345 (9.56 < 9.56 < 32.97) x 10~*
BN | 1.185 x 107¢ 202 249 780 (1.18 < 1.18 < 9.24) x 107%
160 | 8.372 x 1073 202 262 951 (8.37 < 8.37 < 79.65) x 1079
170 ] 3.398 x 1076 202 260 82 (2.78 < 3.40 < 8.83) x 107%
Ne | 1.178 x 1073 202 257 770 (1.18 < 1.18 < 9.07) x 1079
2INe | 3.882 x 107 202 260 890 (3.88 < 3.88 < 34.56) x 107%
2Ne | 3.776 x 10~* 202 267 519 (3.78 < 3.78 < 19.59) x 10~
%Na | 4.457 x 107° 202 263 608 (4.46 < 4.46 < 27.11) x 107
Mg | 3.715 x 1074 202 257 769 (3.71 < 3.71 < 28.57) x 10~
BMg | 7.992 x 107° 202 262 744 (7.99 < 7.99 < 59.45) x 10-%
Al | 4.698 x 1077 202 270 831 (4.70 < 4.70 < 39.06) x 1077
BMg | 8.353 x 107° 202 261 795 (8.35 < 8.35 < 66.40) x 109
2TAl | 6.130 x 107° 202 261 893 (6.13 < 6.13 < 54.76) x 10%°
328 | 4.278 x 1074 202 261 915 (4.28 < 4.28 < 39.14) x 10~%
AT | 8.542 x 107° 202 262 941 (8.54 < 8.54 < 80.40) x 107%°
0Ca | 5.265 x 107 202 260 874 (5.26 < 5.26 < 46.00) x 10~%
MCa 19134 x 1077 202 256 753 (9.13 < 9.13 < 68.75) x 1077
BTi | 1.704 x 1076 202 259 838 (1.70 < 1.70 < 14.28) x 107%
2Cr | 5.687 x 1076 202 247 443 (5.69 < 5.69 < 25.21) x 107%
%Fe | 1.018 x 1073 202 259 837 (1.02 < 1.02 < 8.52) x 107
BCu | 9.997 x 1076 202 270 1197 | (10.00 < 10.00 < 119.70) x 107%
Ba | 8.060 x 107 202 253 169 (8.06 < 8.06 < 20.39) x 107%
Kr |9.696 x 1078 202 261 112 (9.70 < 9.70 < 25.33) x 107%
Pb | 7.660 x 107° 202 251 185 (7.66 < 7.66 < 19.24) x 107%

Y 1.496 x 1078 202 264 63 (0.94 < 1.50 < 3.95) x 107
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5.5 Single/Primary Star Mass Distribution

IMF1 KTG93 Salpeter | Chabrier
a=—2.2
IMF2 Flat-Q Flat-Q Flat-Q
Sepdist | Flat In(a) | Flat In(a) | Flat In(a)
Isotope Y Relative % Limits
Yields %
"H | 1.898 x 107! 109 190 (1.90 < 1.90 < 3.61) x 1071
He |1.019x 107! 126 215 (1.02 < 1.02 < 2.19) x 107
20 | 5.735x 1073 200 320 (5.74 < 5.74 < 18.34) x 1079
BC 6111 x107° 113 203 (6.11 < 6.11 < 12.39) x 10=%
BN | 8111 x 1074 136 232 (8.11 < 8.11 < 18.80) x 10~
BN | 9.950 x 1076 147 253 (9.95 < 9.95 < 25.22) x 107%
160 | 9.561 x 107° 211 334 (9.56 < 9.56 < 31.93) x 10~%
"0 ] 6.256 x 107° 124 221 (6.26 < 6.26 < 13.81) x 107%
Ne | 1.186 x 1073 185 297 (1.19 < 1.19 < 3.52) x 1079
HNe |[3.719x 1076 179 292 (3.72 < 3.72 < 10.87) x 107%
2Ne |2.842 x 107* 197 314 (2.84 < 2.84 < 8.92) x 10-%
ZNa | 3.707 x 107° 171 281 (3.71 < 3.71 < 10.43) x 10~
Mg | 4.228 x 1074 177 287 (4.23 < 4.23 < 12.12) x 107™
Mg | 7.309 x 10~° 189 305 (7.31 < 7.31 < 22.30) x 10-%
AL | 3.985 x 1077 213 341 (3.98 < 3.98 < 13.57) x 1077
%Mg | 7.733 x 107° 198 316 (7.73 < 7.73 < 24.40) x 107
ZTAL | 5.920 x 107° 207 328 (5.92 < 5.92 < 19.41) x 10~
329 16.028 x 1074 166 274 (6.03 < 6.03 < 16.54) x 10~
BAr | 1.251 x 107 167 276 (1.25 < 1.25 < 3.46) x 107
0Ca | 9.848 x 107° 148 251 (9.85 < 9.85 < 24.72) x 10~%
“Ca | 3.602 x 107° 85 164 (3.06 < 3.60 < 5.89) x 107%
BT | 3.267 x 107° 86 165 (2.81 < 3.27 < 5.40) x 1079
2Cr | 7.949 x 107° 91 173 (7.27 < 7.95 < 13.75) x 10-%
Fe | 2.485 x 1073 125 218 (2.49 < 2.49 < 5.43) x 1079
®Cu | 8.835x 1076 192 314 (8.83 < 8.83 < 27.74) x 107%
Ba | 6.505 x 107° 112 197 (6.50 < 6.50 < 12.80) x 107%
Kr |6.366 x 1078 113 202 (6.37 < 6.37 < 12.85) x 107%
Pb | 6.453 x 107 113 198 (6.45 < 6.45 < 12.80) x 107%
Y 8.861 x 107° 102 186 (8.86 < 8.86 < 16.48) x 107%

Table 14: Binary star yields relative to mass input y with variation primary star
distribution.

mass
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5 Stellar Yields: Fast Parameters

raising mgy does not matter because the stars around M < 0.95Mg have zero yield in
13.7 Gyr (at solar metallicity) but the IMF must still be suitably normalized. As shown
in table 13 when my is raised to 0.8 M, (as was done for the primary mass distribution in
Hurley et al., 2002) all the y yields are doubled because more mass goes into massive stars.
A change of my also affects the secondary star ¢ distribution (see section 5.6). Further
increase of mg, which is not justified by observations e.g. Goldberg et al. (2003), causes
further increase in the yields although the effect is not uniform because my rises above the
0.95 Mg, limit.

Primary star masses are thought to be distributed according to the single star IMF
(Popova et al., 1982). Binary yields for various primary mass distributions show trends
similar to the single-star yields for a varying IMF, as shown in table 14.

In conclusion, while the Salpeter IMF is based on limited data and old models, two newer
IMFs (KTG93 and Chabrier) still lead to quite different yields. This is due to the different
slope at intermediate and high mass (—2.7 for KTG93, —2.3 for Chabrier) which is the
hardest mass range to measure. The minimum stellar mass is important for normalization
of the IMF and variation in a reasonable range alters all single-star yields by up to a factor

of two.
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5.6 Secondary Star Mass Distribution

5.6 Secondary Star Mass Distribution

Binary stars are distributed on a 3D grid of the primary mass M, assumed to be KTG93,
secondary mass Mo, and separation a, assumed to be flat in In a between 3 and 10* R, (see
section 5.7). The secondary mass is then distributed according to a distribution ¢(Ms) in
the range 0.1 < M, /Mg < 80. It is conventional to use ¢(q) where ¢ = My /M is the mass
ratio. For insertion into eq. (171) ¢(g) must be related to ¢(In My). For a given My,

dp
ap 193
2 ?(q) (193)
then
dM, M, dln M,
da=3r M, gdn M, (194)
SO
dp dp
e — o(In M. 1
q9(q) 95 = A g, ¢(In My) (195)

and only an extra factor of ¢ is required.
The default distribution is a flat distribution in ¢ for ¢ < 1 and zero otherwise. However
this is not as simple as it seems! For a given M, there is a minimum value of ¢ given by
0.1 Mg

min — 5 196
q L (196)

so the distribution is only flat in ¢ in the range ¢, < g < 1. Because ¢, is a function
of M; the probability density function for the population as a whole, which is what must
be used to compare with observations, is not flat in ¢! However, as the minimum observ-
able primary star mass my is increased the simulated population approaches a true flat-g
distribution. To illustrate this, figure 57 shows d¥/dgq vs ¢ for a stellar population? for
two values of mg, 0.1 My and 0.5 Mg, in 20 uniformly-spaced bins. Recent observations

of spectroscopic binaries of Goldberg et al. (2003) are also plotted. The simulated flat-¢

2The population consists of 107 stars, 100 x 100 in M; x a space, 1000 stars in M-
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Figure 57: dW¥ (M, q,a)/dq vs q (red lines) for a flat-¢ distribution. The left panel is for
mgo = 0.1, the right panel for my = 0.5. Also shown (in blue) is the observed
spectroscopic binary g-distribution (Goldberg et al., 2003).

distribution with my = 0.1 My peaks at ¢ = 1 while with my = 0.5 My the simulated
distribution is truly flat above ¢ = 0.2. However, it is difficult to observe binaries with
low-mass primaries so observed distributions prefer a higher mg (e.g. 0.5 M) even if the
true value is lower (e.g. 0.1 Mg).

For single stars the only effect on stellar yields of choosing mg higher than 0.1, provided
mo < 0.9, is to change the normalization of the IMF because the yield of low-mass stars is
negligible in 13.7 Gyr. The change in yields owing to variation of mg in binaries is shown in
table 15. As with the single stars the effect is to alter the normalization of the distribution
provided my < 1 M. This seems reasonable given that Goldberg et al. (2003) measure
primary masses down to 0.4 My and secondaries down to 0.1 M.

Other forms of 1(¢q) have been suggested in the literature. As extreme examples Gar-
many, Conti & Massey (1980) suggest ¢(q) o< ¢°® from a survey of O-stars and as a com-
plete, and unjustified, contrast ¢(g) oc ¢~ 1% is also considered. Tt is perhaps also reasonable
to assume the secondary star is taken at random from the primary IMF (Duquennoy &
Mayor, 1991) so ¢(Ms) = 1p(M;) with ¢ < 1. These distributions are shown in figure 58
which facilitate comparison of the simulated dW¥/dg with the most recent observations

(Goldberg et al., 2003). Tt is impossible to distinguish between the flat-¢ distribution and
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5.6 Secondary Star Mass Distribution

IMF1 KTG93 KTG93 KTG93 KTG93 KTG93
mo = 0.1 mo = 0.5 mop = 1.0 mo = 8.0
IMF2 Flat-Q Flat-Q Flat-Q Flat-Q Flat-Q
Sepdist | Flat In(a) | Flat In(a) | Flat In(a) | Flat In(a) | Flat In(a)
Isotope y Relative % % % Limits
Yields %
H 1.898x1071 100 156 229 207 (1.90 < 1.90 < 4.35)x 1001
‘He 1.019x107! 100 156 232 302 (1.02 < 1.02 < 3.08)x 1071
120 | 5.735x1073 100 158 241 794 (5.74 < 5.74 < 45.53)x 10793
3¢ | 6.111x107° 100 158 240 138 (6.11 < 6.11 < 14.64)x107%
HUN | 8.111x107* 100 157 238 305 (8.11 < 8.11 < 24.77)x10~%
5N | 9.950%x107° 100 158 241 178 (9.95 < 9.95 < 24.02)x107%
60 | 9.561x1073 100 158 240 910 (9.56 < 9.56 < 87.05)x 10793
170 | 6.256x1076 100 158 240 141 (6.26 < 6.26 < 15.03)x107%
2ONe | 1.186x1073 100 157 237 746 (1.19 < 1.19 < 8.85)x 1072
2INe | 3.719x1076 100 157 238 787 (3.72 < 3.72 < 29.27)x107%
ZNe | 2.842x1074 100 158 241 714 (2.84 < 2.84 < 20.29)x107%
BNa | 3.707x107° 100 157 239 646 (3.71 < 3.71 < 23.93)x107%
Mg | 4.228x1074 100 157 238 654 (4.23 < 4.23 < 27.66)x10~%4
BMg | 7.309%x107° 100 157 239 760 (7.31 < 7.31 < 55.56)x107%
A1 | 3.985x10°7 100 158 243 967 (3.98 < 3.98 < 38.52)x 1077
HMg | 7.733x107° 100 157 239 819 (7.73 < 7.73 < 63.35)x107%
ZTAL | 59201075 100 157 239 889 (5.92 < 5.92 < 52.61)x107%
328 6.028x10~* 100 158 240 620 (6.03 < 6.03 < 37.39)x107%
36Ar | 1.251x1074 100 158 240 620 (1.25 < 1.25 < 7.76)x 107%4
10Ca | 9.848x107° 100 158 240 442 (9.85 < 9.85 < 43.50) x 1079
4“Ca | 3.602x107° 100 158 243 19 (0.69 < 3.60 < 8.74)x107%
BTi | 3.267x107° 100 158 243 39 (1.28 < 3.27 < 7.93)x107%
20r | 7.949x107° 100 158 242 32 (2.58 < 7.95 < 19.25)x107%
5Fe | 2.485x1073 100 158 241 289 (2.49 < 2.49 < 7.19)x 1079
65Cu | 8.835x107° 100 158 243 929 (8.83 < 8.83 < 82.07)x107%
Ba 6.505x 1079 100 156 233 201 (6.50 < 6.50 < 15.17)x107%
Kr 6.366x1078 100 157 237 157 (6.37 < 6.37 < 15.08) x 107
Pb 6.453x107° 100 156 233 211 (6.45 < 6.45 < 15.02)x107%
Y 8.861x107° 100 157 238 109 (8.86 < 8.86 < 21.10)x10~%
Table 15: Binary yields relative to mass input y with variation of the minimum primary

mass my.
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Figure 58: dV¥/dq vs ¢ (red lines) for ¢(q) o< ¢*° (upper left), ¢(q) oc ¢~1° (upper right)
and (Ms) = ¥(M;) with ¢ < 1 (lower panel). The minimum primary mass
moy = 0.1.

the choice of both stars from the IMF, with M, < M, on observational grounds alone,
especially given low-q selection effects. The observed peak at ¢ ~ 0.2 is hinted at by the
synthetic distribution when both stars are chosen from the IMF. No attempt is made to
model selection effects except by increasing my — and this tends to flatten the distribution

and does not produce the peak.

The effect on stellar yields y due to a variation of the secondary mass distribution is
shown in table 16. The default data set has a KTG93 primary mass distribution (with

mo = 0.1), flat-¢ secondary mass distribution and flat in In a separation distribution.
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5.6 Secondary Star Mass Distribution

Choosing M, from the primary star IMF has the effect of boosting the number of low-
and intermediate-mass secondary stars at the expense of high-mass secondaries. This
distribution increases the s-process and HBB yields: N increases to 119% of the default
yield, Ba increases to 121%, as well as the nova yields, *C increases to 129%, N to
296%, 70 to 326%. The number of type Ia supernovae is reduced so **Ca, *8Ti and *2Cr
yields drop to a fifth of the default value and °°Fe to 59%. The reduction in high-mass
companions leads to a drop in Cu which is not surprising because there are fewer core
collapse supernovae compared to the flat-¢ distribution.

The power law forms do not significantly change most yields compared to the flat-g case
except for the explosive binary process yields. Nova yields (as measured by *C or °N)

1.5

drop for ¢*5 but rise for ¢~!5, core-collapse SN yields (**Cu) rise slightly for ¢ and drop

by up to 20% with ¢=!° while SNIa yields rise by up to 14% for ¢*® and drop by 65% for

q71.5.

In conclusion the binary explosive process yields depend strongly on the secondary mass
distribution. SNIa yields vary from 30% to 114% of the flat-¢ model, while N and 7O
are boosted by a factor of three if the secondary is chosen from the IMF. The changes in
any of the non-explosive isotope yields are usually less than 20% - far less than the 200%

changes due to uncertainty in the single/primary star mass distribution.
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IMF1 KTG93 KTG93 KTG93 KTG93
IMF2 Flat-Q IMF1¢<1 q° g s
Sepdist Flat In(a) Flat In(a) | Flat In(a) | Flat In(a)
Isotope y Relative % % Limits
Yields %
TH 1.898 x 107! 116 102 91 (1.73 < 1.90 < 2.24) x 1071
‘He | 1.019x 1071 115 103 90 (0.91 < 1.02 < 1.18) x 107
2¢ | 5.735x 1073 81 107 66 (3.76 < 5.74 < 6.14) x 1079
3¢ | 6.111x 1075 128 92 101 (5.60 < 6.11 < 7.91) x 1079
MN | 8111 x 1074 121 101 93 (7.55 < 8.11 < 9.83) x 107%
5N 1 9.950 x 1076 291 84 200 (8.41 < 9.95 < 29.43) x 107
60 | 9.561 x 1073 96 105 76 (7.22 < 9.56 < 10.04) x 1073
70 | 6.256 x 107 321 81 216 (5.07 < 6.26 < 20.38) x 107
0Ne | 1.186 x 1073 106 104 83 (0.98 < 1.19 < 1.28) x 1079
2INe | 3.719x 1076 107 104 83 (3.09 < 3.72 < 4.04) x 1079
2Ne | 2.842x 107 111 104 85 (2.41 < 2.84 < 3.15) x 107%
BNa | 3.707 x 107° 114 103 87 (3.23 < 3.71 < 4.29) x 107%
Mg | 4.228 x 1074 96 105 76 (3.22 < 4.23 < 4.44) x 107%™
Mg | 7.309 x 1075 107 104 83 (6.04 < 7.31 <7.93) x 1079
A1 | 3.985x 1077 108 102 84 (3.35 < 3.98 < 4.38) x 1077
HMg | 7.733 x 107 108 104 83 (6.45 < 7.73 < 8.48) x 1079
2TAl | 5.920 x 1075 107 104 83 (4.90 < 5.92 < 6.42) x 1079
328 6.028 x 1074 78 106 65 (3.94 < 6.03 < 6.39) x 10794
36Ar | 1.251 x 10~* 76 106 64 (0.80 < 1.25 < 1.33) x 107%
10Ca | 9.848 x 107° 65 107 57 (5.62 < 9.85 < 10.51) x 1079
4Ca | 3.602x 107° 30 114 33 (1.07 < 3.60 < 4.11) x 1079
BT | 3.267 x 1075 34 114 35 (1.09 < 3.27 < 3.72) x 1079
52Cr | 7.949 x 1075 34 112 36 (2.65 < 7.95 < 8.93) x 107%
56Fe | 2.485x 1073 59 108 52 (1.30 < 2.49 < 2.69) x 10793
65Cu | 8.835x 107° 103 105 80 (7.03 < 8.83 < 9.24) x 1079
Ba 6.505 x 1079 119 102 92 (5.99 < 6.50 < 7.84) x 107%
Kr 6.366 x 1078 125 103 95 (6.04 < 6.37 < 8.04) x 10798
Pb 6.453 x 1079 118 102 92 (5.92 < 6.45 < 7.73) x 1079
Y 8.861 x 1079 126 102 96 (8.50 < 8.86 < 11.31) x 10799

Table 16: Binary star yields relative to mass input y with variation of the secondary mass
distribution.
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5.7 Separation Distribution

5.7 Separation Distribution

The default distribution of the initial binary separation a is a flat distribution in Ina in

the range 3 < a/Re < 10* (as in Hurley et al., 2002)

X(Ina) = constant . (197)

The upper limit is chosen because, while stars at higher separations may be gravitation-
ally bound, they do not interact significantly enough to alter their evolution. The lower
limit is somewhat arbitrary and it should be noted that stars born in an equal mass binary
with M; = My > 2.1 Mg and a = 3R merge within 10° years. Although this is not very
physical there are not many of these stars.

It is difficult to compare this distribution with observed separation distributions because
these rely on well known distances to binaries and that the stars are optically distin-
guishable. Periods are easier to observe e.g. by spectroscopic methods. An initial period

distribution can be constructed from x(a) by use of Kepler’s law

which for the Sun/Earth system with a measured in AU (1 AU being the Sun-Earth

distance), period P in years and M; and M, measured in Mg becomes

B 47

1
G

(199)

because® My + My ~ M; and a = P = M; = 1. Thus for any system measured in these

units,

a3 1/2
P=(—— ears 200
(M1+M2) y (200)

which, with a converted to Ry and periods in days, leads to

3The mass of the Earth, M, is negligible compared to the mass of the Sun, M; = M.
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3/2 3/2
RQ) ( a days (201)

P = 365.24 S
(1AU M + M)/

where Ry /1 AU = 1/214.95.

The distributions of separation and period obtained from the flat In a distribution with
M distributed by the KTG93 IMF and M, by the flat-g distribution are shown in figure 59.
The flat distribution obtained between P = 1d and 164 yr agrees reasonably well with the
range in observations of Popova et al. (1982) and Abt (1983) although there is definitely
room for improvement. The linear period distribution fit from Goldberg et al. (2003, based
on spectroscopic binaries) is also plotted and it should be noted that this is anything but
flat in In P! While the synthetic binary separation distribution reproduces the observed
range of binary periods it does not reproduce Goldberg et al. (2003)’s peak at periods of
about 10yrs. The shortest period binaries are probably not observed because they merge
quickly while both stars are on the MS so will be seen as single stars. The highest period
synthetic binaries, e.g. In P & 11 so P ~ 164 yrs, would suffer from observational selection

effects — most stars have not been observed continuously for 160 years.

A more accurate match to the Goldberg et al. (2003) data can be made with a negative-
exponent power law 1(a) oc a=%7 (so ¥ (Ina) o< a®?) in the range 10 < a/R, < 1.3 x 10°.
The lower separation limit agrees better with the observations of Popova et al. (1982). This
is considered along with a positive-exponent power law ¥ (a) < a'? and a more extreme
negative-exponent power law ¢(a) oc a=*°. There is no observational justification for these

latter exponents but it is interesting to see if they have any effect on the integrated yields.

The effect on yields y of these various distributions is shown in table 17. The difference
between the default separation distribution (flat in Ina) and the better fit to the obser-

~07) is a small drop for all isotopes except the Snla isotopes which

vations (power law a
drop by half. Nova yields, if measured by >N or 7O, rise by 147% or 122% respectively
while the yield of *C actually drops. The reason for this is uncertain — novae and TPAGB
stars are the main producers of *C and there is no drop in the s-process or *N yields, so

there should be no drop in *C. However, if most *C is produced by novae (see chapter 7),
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IMF1 KTG93 KTG93 KTG93 | KTG93
IMF?2 Flat-Q) Flat-Q Flat-Q | Flat-Q
Sepdist | Flat In(a) a o7 al? a=20
10 <a/Rgp < 1.3e3
Isotope Y Relative % % Limits
Yields %
H 1.898 x 107! 90 83 137 (1.57 < 1.90 < 2.60) x 107
“He |1.019 x 10! 03 88 129 | (0.90 < 1.02 < 1.31) x 10~
12¢ 5.735 x 1073 90 71 109 (4.04 < 5.74 < 6.28) x 1079
B0 | 6.111 x 107 82 51 7| (312 <6.11 < 6.11) x 107
UN 8.111 x 1074 97 100 117 (7.88 < 8.11 < 9.47) x 107"
BN [ 9.950 x 1076 147 62 19 | (1.89 < 9.95 < 14.61) x 10~
160 | 9.561 x 1073 89 74 120 | (7.11 < 9.56 < 11.47) x 10~
70 | 6.256 x 106 122 64 62 | (3.87 < 6.26 < 7.63) x 10~
Ne | 1.186 x 1073 91 84 129 (1.00 < 1.19 < 1.53) x 107%
2Ne | 3.719 x 1076 92 88 133 (3.29 < 3.72 < 4.94) x 107%
2Ne 2.842 x 1074 101 111 125 (2.84 < 2.84 < 3.54) x 107"
BNa | 3.707 x 107° 95 103 143 (3.51 < 3.71 < 5.30) x 107%
2\g | 4.228 x 10~ 88 75 124 | (3.16 < 4.23 < 5.26) x 10~
BMg | 7.309 x 107° 95 96 133 (6.98 < 7.31 < 9.74) x 107%
A1 3.985 x 1077 94 99 138 (3.75 < 3.98 < 5.49) x 1077
Mg | 7.733 x 1075 92 92 135 (7.08 < 7.73 < 10.41) x 107%
2TAl | 5.920 x 107 92 88 132 (5.19 < 5.92 < 7.80) x 107%
328 6.028 x 1074 84 60 111 (3.62 < 6.03 < 6.68) x 107%
%Ar | 1.251 x 1074 83 58 111 (0.72 < 1.25 < 1.39) x 107"
0Ca ]9.848 x 107° 76 45 112 (4.47 < 9.85 < 11.04) x 107%
“Ca |3.602 x107° 06 3 139 (0.09 < 3.60 < 5.02) x 107%
BTy 3.267 x 1075 Hh) 5t 150 (0.16 < 3.27 < 4.91) x 107%
2Cr | 7.949 x 107° o7 6 135 (0.51 < 7.95 < 10.75) x 107%
Fe 2.485 x 1073 70 35 138 (0.87 < 2.49 < 3.42) x 1079
%5Cu | 8.835 x 107° 91 96 140 (8.03 < 8.83 < 12.41) x 107%
Ba 6.505 x 107 96 106 144 (6.24 < 6.50 < 9.39) x 107%
Kr 6.366 x 1078 100 130 162 (6.34 < 6.37 < 10.31) x 1078
Pb | 6.453 x 10~ 95 101 142 | (6.11 < 6.45 < 9.18) x 10~
Y 8.861 x 107 105 144 165 (8.86 < 8.86 < 14.59) x 10~%
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5.7 Separation Distribution

and if these novae are predominantly high-mass COWDs (M > 1.15Mg) or ONeWDs the
results of Jos¢ & Hernanz (1998) show that '3C is anti-correlated with both N and '7O.
Perhaps highly separated systems are more likely to lead to nova-like accretion rates for
long periods of time without the possibility of common-envelope evolution, whereas closer
binaries lead to higher accretion rates, common-envelope evolution and possible SNela.

0 severely reduces the Snla yields to almost nothing

The positive-exponent power law a'
and reduces the nova yields. For other isotopes there is up to 25% reduction. The reason
for this is that large-separation binaries are favoured so interaction leading to novae or
type Ia supernovae are unlikely. There is an increase in the s-process yields corresponding
to the survival of more TPAGB systems in wide binaries.

The a=2Y power law reduces Snla and nova yields but increases everything else. This
separation distribution leads to a peak in the initial period distribution at 1day. For
most initial masses the stars merge while both are on the MS so effectively the population
behaves as a single star population boosted to higher mass. This increase in stellar mass,
and increase in single star fraction, leads to an increase in yields from single star processes
such as TPAGB/WR wind loss (and associated N yield) and core-collapse SNe (as ®Cu)
and a drop in the yield from novae. It is interesting to note that the SNela yields increase

— probably owing to an increased number of close binaries leading to common-envelope

evolution — while the nova yields decrease; exactly the opposite of the =07 distribution.
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5.8 Conclusions

Yields relative to mass input, ¥, increase by up to a factor of 3 due to reasonable uncer-
tainties in the single/primary star mass distribution compared to the KTG93 IMF, +20%
owing to ¢ distributions different from the flat-¢ distribution and a similar amount due to
separation distributions which differ from the flat-In a distribution.

The low-mass cutoff mg alters normalization of the single/primary star mass distribution
or ¢ distribution and because most stars lie in the range my < M /Mg < m; raising mg by
a small amount significantly boosts the yields.

Type Ta supernova and nova isotopes are dominated by changes in the ¢ and separation
distributions — Snla isotope production drops by about 70% if the secondary star is chosen
from the primary star IMF even though this distribution is favoured by spectroscopic
binary observations. An extreme separation distribution (a!?) effectively stops type Ia

~0-7) which agrees better

supernovae from occurring, but a more realistic distribution (a
with observations is different to the default flat-In a distribution by at most 50%.
In comparison to these uncertainties, errors in yields owing to numerical resolution,

which are less than 2%, are negligible for N = 10* single stars or N = 100® binary stars.
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6.1 Introduction

The slow parameters correspond to changes in the input physics and there are many such
parameters. It is impossible to analyse the parameter space covered by all of them so the
default model (see section 5.2) is used with one parameter varied at a time. The total yield

¢; of isotope j can then be expanded as a Taylor series

dg;
d!L‘Z‘

G~ Go+ (@i — x4i0) = Cjo (1 +1T; o ) (202)

T Aw;
where z; are the slow parameters, x;o are the default values, dx; = x; — ;0 and z varies
from Tmin t0 Tmin + Az; . A fitting routine is used to evaluate

e
from the data. Because the derivative terms 7;; are normalized to both the z range and
the default yield they provide a relatively unbiased comparison of the effect of the slow
parameters x;. The Taylor series does not contain cross terms between the x; so the effect
of varying two slow parameters at the same time remains unknown although the series will
provide a first-order estimate. Note that this is a linear approximation only, in some cases,
such as variation with Z, higher order expansions may be necessary for inclusion of yields
into GCE models. The yield relative to mass input is used (; = y;.

The parameters which are varied are:
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172

Maximum stellar evolution time 1 Myr <t < 13.7 Gyr.

Metallicity 0.0001 < Z < 0.02. Note that initial abundances are taken from a
quadratic fit to the initial abundances of Anders & Grevesse (1989, Z = 0.02) and
Russell & Dopita (1992, LMC Z = 0.008 and SMC Z = 0.004) for Z > 0.004 when
the isotopic abundance is available. Lower metallicities and isotopes which are not
considered by Russell & Dopita (1992) are scaled to solar abundances of Anders &
Grevesse (1989).

Eccentricity 0 <e < 1.

GB wind Reimers factor 0.25 < n < 0.75.

AGB M of H02, K02 or a Reimers wind with n = 3.

WR wind of HO2, MM or NL.

WR wind enhancement factor 0.1 < fyyg < 10.

Common-envelope parameter 0.1 < acgp < 5.

Eddington limit for accretion, frpp = 1, or no limit for accretion, fypp = 106.
s-process *C pocket mass factor 0.01 < & < 2.0.

SN kick velocity dispersion 0 < ogx/kms™ < 400.

Enhanced binary wind loss 0 < B < 10*.

BH masses given by the prescription of H02, which leads to low masses, or Belczynski
et al. (2002), which gives higher BH masses (see e.g. Izzard, Ramirez-Ruiz & Tout
2004 or section 3.8).

Dredge-up parameters —0.1 < AM; min <0 and 0 < Ay, < 1.



6.1 Introduction

The above parameters are varied on a grid of 1000 single stars and 10° binary stars. Given
the large number of slow parameters and the number of isotopes it is possible to consider
(currently 126), a selection of isotopes must be made which is more restrictive than that
used during the slow parameter analysis, these are 'H, 12C, 14N, 1°N, 160, 22Ne, 4Ca, °Fe,

65Cu and Ba.
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6.2 Isotopic Comparison

6.2.1 Maximum Stellar Evolution Time

The time when a particular isotope is released, relative to stellar birth, plays a critical
role in GCE models. In single stars the accepted picture is a prompt release of WR-
star processed material, N in the WN phase, *He, 2C and %O in the WC/WO phases,
and core-collapse supernova isotopes such as '2C, 160, some °°Fe and %°Cu, after about
4 —100 Myr. The longer lived stars explode as EAGB stars. This is followed by the release
of N after about 100 — 200 Myr owing to hot bottom burning TPAGB stars in the mass
range 4 < M /Mg < 8. Then there is further release of ?C and Ba by TPAGB stars which
undergo third dredge-up, significant s-processing and no HBB (1.5 < M/Mg < 4) L on
timescales of billions of years. There is little production of 1*N or #*Ca in single stars — any
yield is due to ejection of material present at stellar birth. This is illustrated by figure 61.

For binary stars the picture is more complicated. Mass transfer leads to more WR stars,
some massive merged stars and (probably!) fewer AGB stars. More WR and massive stars
means more SNelb/c and more ?C. The second peak in production owing to AGB stars,
while still evident, is vastly reduced and replaced by a more continuous yield of 2C to the
ISM. There is a drop in the °Cu production in binaries, probably because core-collapse
supernovae are more likely to be of type Ib/c in binaries but type II in single stars. Binary
mass transfer acts to strip the stars of their envelopes prior to the explosion. This also
leads to smaller cores in SNelb/c and the WW95 fits have *Cu decreasing with decreasing
CO core mass.

AGB stars are destroyed by mass transfer so the yields of 1*N, ?2Ne and Ba drop com-
pared to single stars. Similarly ?’Ne yields drop at times later than about 1 Gyr and Ba
at times later than 100 Myr. Note that 90O yields are similar between single and binary
stars. The excess beyond about 100 Myr is due to some extra WR stars, a small yield from
SNela and fewer AGB stars?.

There are also binary-only explosive processes at work. These lead to the over-production
of N from novae and **Ca and *°Fe from SNela and HeWD mergers at times later than
about 1 Gyr.

!There may be a large population of post-common-envelope AGB stars. This depends on the free pa-
rameter acg.

2The 190 intershell abundance is low enough in these stars that it leads to a slight depletion of °O in
the stellar envelope because at Z = 0.02 the envelope abundance of 10 can be as high as 0.01.
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6.2.2 Metallicity

The effect of varying the metallicity varies greatly from isotope to isotope (see fig. 62).
At metallicities greater than 0.01 there is a tendency for material present in the star at
birth to dominate the yield as it is lost in stellar winds, this is true for 2C, N, 160 and
2Ne, and N because it is produced from 2C. However there is no such tendency for the
SNIa, nova or s-process isotopes - mainly because their initial abundances are so small. If
isotopes heavier than “He are truly dependent only on the initial stellar abundance they
should have zero yield as Z — 0. This is not seen in any of the models, indeed the opposite
is usually true.

At low metallicity the yield of 2C relative to the mass input to stars is almost identical for
single and binary stars, compared to a significant increase owing to binary stars at Z = 0.02.
This is because dredge-up is more efficient at low metallicity so the TPAGB stars that do
form make more 2C which cancels out the increase in SN yields from binaries. This is
purely a coincidence! At solar metallicity dredge-up is less efficient but SNe are not so the
single star 2C yield drops relative to the binary yield. There is no such SN compensation
for "N which has its yields reduced in all binaries although the lower metallicity stars
produce more N by virtue of their hotter HBB.

Below Z = 0.01 60 is over-produced a little in binaries because of the higher number
of SNell/Ib/c. Above Z = 0.01 the yield is dominated by stellar wind losses. The yield
of 22Ne drops in the binaries because its major source is usually TPAGB star dredge-up.
Barium likewise, the abundance of the dredged-up material is a strong function of Z, and
the yields reflect this, but the single-star yields are always about twice the binary yields.

Nova-produced '°N is always greater in binaries, by up to a factor of 4 at Z = 0.0001.
Production of **Ca increases as Z decreases, perhaps due to the increased mass of sub-Mcy,
SNIa progenitors (there is less mass loss as metallicity decreases). 5°Fe follows **Ca and
while at Z = 0.02 only 60% of °Fe is made in binaries, at Z = 0.0001 it is nearly 80%
which reflects the greater amount of mass ejected by SNela at low Z. The ®Cu yield is
again dominated by type II supernovae rather than Ib/c and the yield from single stars is

up to 30% greater than the yield from binaries.
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6.2.3 GB Wind Prescription

Figure 63 shows the effect of varying ngg on the yields. It is expected that an increase
of ngp leads to a decreased stellar mass at the beginning of the TPAGB. This leads to a
decrease in both third dredge-up and HBB so the yields of HBB/3DUP isotopes (12C, N,
22Ne and Ba) decrease slightly — the effect on N is in the opposite direction because it
is destroyed in TPAGB stars. The hydrogen yield rises with ngg because material ejected
on the GB is less likely to be CNO processed (or polluted by a companion) than material
ejected at a later stage of evolution. Compared to the difference between the single and

binary star yields changing ngg has a small effect.
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Figure 63: Yield relative to mass input y vs GB wind factor 7.
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6.2.4 AGB Wind Prescription

Figure 64 shows the effect of varying the AGB wind-loss prescription using the prescriptions
of HO2, K02 and a Reimers = 3 mass-loss rate. The effect on most isotopes is smaller
than the difference between single and binary stars with the exception of N and Ba. The
Reimers mass-loss rate leads to a slow erosion of the stellar envelope, rather than the strong
superwind of the H02 and K02 wind-loss prescriptions (both are based on VW93). This
means that HBB and third dredge-up can proceed for longer so more 2C is converted to
1N and more Ba is dredged-up. The uncertainty in N yield is particularly troublesome
— binaries with a Reimers mass-loss rate produce more nitrogen than single stars with
a HO2 mass-loss rate and a similar amount to binaries with the K02 prescription. The

under-production owing to duplicity ranges from about 20% (H02) to 40% (Reimers).
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6 Stellar Yields: Slow Parameters

6.2.5 WR Wind Prescription and Enhancement Factor

The effect of varying the WR, wind-loss prescription is shown in fig. 65. The effect on most
isotopes is less than the effect of duplicity with the exception of *C and °0. Oxygen yields
are up to 30% lower with the MM mass loss than the NL or H02, while carbon is increased
for NL relative to MM and HO2. The different mass-loss rates lead to different pre-SN CO
core masses and these give different yields. The MM mass-loss rates are generally higher,
so while more 10 is lost during the WR phase the final core mass is lower, corresponding
to a lower 1°0 mass fraction (and higher '2C) in the SN ejecta. The default (H02) mass-loss
rate is then modulated by a parameter fwg to reflect current uncertainty in mass-loss rate
(see fig. 66). This has a similar effect to the use of the MM mass-loss rates. That is less

16 and more 2C.
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Figure 66: Yield relative to mass input y vs WR wind enhancement factor.



6.2 Isotopic Comparison

6.2.6 S-process Pocket Efficiency

The amount of ¥C present in the intershell region of TPAGB stars is poorly constrained
and at present is treated as a free parameter. It should not, and as shown in fig. 67, does
not, affect any isotopes except Ba apart from negligible numerical errors. For £ < 0.8 the
barium yield is constant — this is indicative of negligible production in the intershell, all
yield is due to material present at the birth of the star. For £ = 1.0 there is some Ba
production, mainly in single stars because the binaries are more likely to have their AGB
phases truncated. Barium production is a strong function of metallicity and a complete
description of its yields requires analysis of the { — Z plane (beyond the scope of this work).
The effect of duplicity is to reduce the yield by about 40% for £ = 1.0.
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Figure 67: Yield relative to mass input y vs s-process pocket efficiency.



6.2 Isotopic Comparison

6.2.7 BH Mass Prescription

Figure 68 shows the variation in yields with BH mass prescription. The H02 prescription
leads to lower-mass black holes than the Belczynski prescription. This means that more
matter escapes to the ISM and the corresponding yield is higher. The true BH mass that
results from a given stellar progenitor remains a hotly debated topic within the IoA stellar
evolution group! The difference between single and binary yields for a given isotope is
approximately constant. This suggests the BH prescription has most of its nucleosynthetic
effect by its influence on the mass ejected from the supernova explosion (eq. 137) rather
than on the subsequent evolution of the binary system after the supernova. This may also
be because it is unlikely that a system survives a supernova so it is unlikely the secondary

interacts with the BH.
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Figure 68: Yield relative to mass input y vs black hole mass prescription.



6.2 Isotopic Comparison

6.2.8 Dredge-up Parameters

The two free parameters introduced to solve the problem of the over-luminous carbon
stars can also be considered as free parameters given the current fragile constraint on their
values. They are only calibrated for the SMC and LMC.

Decreasing AM. min leads to more and earlier dredge-up in lower-mass stars than pre-
dicted by calibration to the Monash models. Consequently more helium is brought to the
surface at the expense of hydrogen and the yields of helium burning products, 2C, ??Ne
and Ba from the s-process pocket, increase. The effect of AM min on the yields is always
smaller than the effect of duplicity.

Provided Api, < 0.8 the effect on stellar yields is less than about 10% (fig. 70), certainly
less than the effect of duplicity. If A\ni, = 1.0 the yields from intershell isotopes are
almost doubled — certainly comparable to duplicity effects although currently ruled out by
LMC/SMC observations.
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6 Stellar Yields: Slow Parameters

6.2.9 Eccentricity

The remaining free parameters relate only to binary star processes.

The eccentricity is set to zero in section 5.2 for two reasons. The first is to reduce
the dimension of the parameter space by one and therefore increase the speed of a grid
run by a factor of 100. The second is because interacting binary systems are thought to
circularize their orbits during mass transfer. Figure 71 shows the effect of varying the
initial eccentricity of the entire population. In a real population of stars the eccentricity
would be distributed in some way but the yields do not vary enough with e to warrant
introduction of such a distribution and the factor of 100 in the grid runtime.

A value e = 1 is clearly unrealistic, these are like single stars. Most yields vary by less
than 10% for e < 0.8. The copper yield increases at e = 0.8 owing to an increase in the
SNII/SNIb/c ratio, probably resulting from mergers of systems at periastron which would
not merge if e = 0. The barium yield is increased a small amount by a combination of

non-conservative RLOF in low-mass stars.
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6 Stellar Yields: Slow Parameters

6.2.10 Common-Envelope Parameter acg

The effect of varying the common-envelope parameter acg on the yields is shown in fig. 72.
An increase in acg means the common envelope is ejected more easily. One possible post-
common-envelope object is a new TPAGB star which forms if the cores merge to form a
new CO core and the envelope is not lost. An increase in acg leads to a slight decrease
in yields of N and barium, although yields of '2C rise because this is less likely to be
processed to *N. A low value of acg is also more likely to lead to a massive star remnant
and correspondingly the ®Cu yield increases owing to an increase in the SNII/SNIb/c
ratio. Quite surprisingly, for acg 2 1.0 the SNIa yields are quite constant. At a ~ 0.5 the
SNTa yields are halved.
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6 Stellar Yields: Slow Parameters

6.2.11 Eddington Limit

Figure 73 shows that the only noticeable effect of imposing the Eddington limit on chemical

yields is on the *Fe yield and even that is negligible compared to the variation of other

slow parameters.
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6 Stellar Yields: Slow Parameters

6.2.12 SN-Kick Velocity Dispersion

The supernova-kick velocity dispersion could be important because a low kick dispersion
leads to more binaries surviving a SN. This would lead to more mergers with NSs or BHs
and a reduced yield. This effect is shown in fig. 74 — the yield of everything drops as
osny — 0 (except hydrogen, which rises slightly).
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6 Stellar Yields: Slow Parameters

6.2.13 Binary-Enhanced Wind Loss

Figure 75 shows the effect of varying the enhanced binary wind loss factor B between 0
and 10%. The effect is to increase the yield of most isotopes at the expense of hydrogen
when there is no extra wind loss. This is to be expected as the stars with lower B are more
massive. The difference between B = 0 and B = 10* is up to 40% for **Ca although most

other isotopes vary by only 10-20%.
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6.3 Taylor Series Coefficients
6.3 Taylor Series Coefficients

The calculated Tj; are listed in table 18. The leftmost column shows the isotope corre-
sponding to each row, the second column is the default yield of the isotope relative to
mass input to stars, the remaining columns are the 7;;. The first row of the table lists the
free parameters, the second row the default parameters and the third row the range Ax;.

T;

ij with a higher magnitude are the important parameters that vary greatly with their
variable x; — those with magnitude greater than 0.1 are marked in red.
The value for Z is approximate owing to the non-linear behaviour of most yields with Z

(e.g. Tzpa =~ 0) — in these cases a higher order fit is required.
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6.4 Conclusions
6.4 Conclusions

It is immediately obvious from table 18 that some slow parameters are important for
calculation of chemical yields.

In single stars 12C is sensitive to all the slow parameters except £qi3. 1N is sensitive only
to Z while 1°N yields are also sensitive to massive star mass-loss rates. The WR. mass-loss
rate also affects the 190 yield, which is otherwise robust. For all the free parameters except
fwr the #*Ca yields are very small compared to the binary population. *Fe and %°Cu are
only really sensitive to Z. Barium is sensitive to all parameters except fwgr but mostly to
éc13 and Z.

For binary populations the trend is for the same dependency as with single stars, although
the magnitude of the variation tends to drop at the expense of more free parameters. For
example, T 12c = 0.237 for single stars but only 0.104 for binary stars. However, in
binaries, there is the uncertain acg for which T, 12c = 0.111 so the total uncertainty in
the yield is about the same.

Some parameters are irrelevant for calculation of yields: fgpp and ogy. The s-process
factor £ci affects only the s-process yields. AM, i, affects only 2Ne in a serious way.
Amin only affects 12C, 22Ne and Ba because these are isotopes involved in third dredge-up.

Again the magnitude of the A\, dependence is smaller in binary stars.
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7 Conclusions - Yields from Single

and Binary Stars

The considerations of the previous two chapters aside, the aim of this work is to determine
the effect of a binary companion on the stellar yield. Figures 76 to 82 show this for a
Z = 0.02 default population (see chapter 5). The yield per unit mass input to stars,
normalized to the KTG93 IMF and multiplied by the mass M, is plotted against In M.

For single stars this is

(204)

ooy Mdy M) fy M) X,(0) dt
?dlnM  dM [ My(M)dM ’

while for binary stars the M, and a distributions (flat-¢ and flat-a, the defaults) are inte-

grated over to give

fi= dy; _ M dy;
/ dln M1 dM1
My (M) [y [, [, d(Ma)x(@)M(8) X () dM da dt 205
Jar, Jor, (My 4= M) (M) (Ma) d My d M, ’
where
t . .
~ __ MASS OUT AS j FROM ALL STARS __ fall stars fo \I’iMi(t)Xj(t) dt di (206)
Yi = MASS INTO ALL STARS - f . M. di
all stars L

as previously.
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7 Conclusions - Yields from Single and Binary Stars

The figures show the yield M, f = Mdy/dIn M, from various sources, Thorne-Zytkow
objects (TZ), giant-branch winds (GB), AGB winds (AGB), WR winds (WR), novae,
SNela, SNelb/c, SNell, common-envelope evolution (Comenv), non-conservative Roche
Lobe Overflow (RLOF) and wind loss from other stellar types (Wind). The corresponding
colours are shown in the key in the top-right corner of each plot. Between each source
name and the colour are two numbers. These are the y for the source and the fraction of
the total yield due to this source. The total yield is the number in the top left corner of
the plot. Single stars are shown in the left plots, binary stars on the right.

These plots answer the question what is the effect of binary stars on chemical yields?
For many isotopes there is little change between single and binary stars'. This is not to
say the source of yield is the same between single and binary stars.

Take hydrogen as an example. The single-star yield is 0.1868, the binary yield 0.1913,
a small difference. However, where the hydrogen comes from is quite different. In going
from single to binary stars the AGB yield is cut by more than half, the same applies to
SNell. These effects are compensated by common envelope and non-conservative RLOF
losses. Similar arguments apply to helium but also the WR, and SNIb/c yields are doubled.
Is this change in stellar source important? Perhaps, because some sources present more
uncertainty than others. Models of massive stars are relatively robust compared to models
of common envelope evolution. The possibility of a burning-shell on the core(s), some
mixing into the core(s) or an incorrect acp cannot be excluded and might have a major
effect.

All isotopes which are produced on the TPAGB have their yields diminished in binaries,
relative to single stars, quite consistently by a factor of two (see 12C, 13C, 1N, 22Ne). Type
IT supernovae give way to type Ib/c, which with smaller cores have different patterns of
yields (more carbon and less oxygen according to WW95).

In most cases there is some binary process which compensates the loss of AGB and SNII

yields. The '2C yields are boosted by a doubling of SNTb/c and WR yields as well as

IThis is true because the yields are normalized to mass input — this seems the most sensible definition of
the yield.
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significant common envelope output. Presumably the latter is carbon present at the stars’
birth although it could be from extreme HeGB stars. Massive star output of carbon, from
SNIT/Tb/c and WR stars, accounts for about 60% of the total carbon yield, assuming a
50% binary fraction (by input mass).

Novae are important contributors to 13C yields but, interestingly, TPAGB stars are more
so. If a 50% binary fraction is assumed then AGB '3C outweighs novae by two to one.
However, given the uncertainties involved in AGB and nova modelling, it is unwise to say
novae are not important. Most >N comes from novae but most 17O comes from single AGB
stars. The majority of N comes from single AGB stars — the massive star contribution is
only a few per cent. Common-envelope output boosts the %0 yield from binaries a little
but it is still quite similar to the single-star yield.

The NeNa-isotope yields all drop in binaries with the exception of 2°Ne. This is because
there is less NeNa cycling on the AGB and the **Ne is more likely to escape the binary
unprocessed in a common envelope ejection. The usual rearrangement of SNII to SNIb/c
has little effect on the combined yield.

The MgAl yields are more interesting because there is some contribution to ?*Mg from
SNela leading to a 20% boost in binaries. There is also the usual drop in yields associated
with fewer TPAGB stars in binaries.

The heavier a-isotopes, 328, 6Ar, 4°Ca, 4Ca, 4®Ti, ®2Cr and °Fe, are all associated
with SNela and single-star yields are small for most of them. Iron is also produced in
core-collapse supernovae, though if a 50% binary fraction is assumed then 57% of the iron
yield is from SNela.

The r-process-only isotope °Cu is produced in roughly equal amounts from single and
binary stars, but 86% of its single-star yield is from SNell compared to only 54% in binaries.
Again SNIb/c make up the difference. The s-process yields drop by 20-40% in binaries due
to a smaller number of TPAGB stars.

So are the binary yields significantly different from single-star yields? That all depends
on how accurate the GCE model is desired to be. But it is now possible to at least quantify

the difference between single and binary star yields over a wide parameter space. If a factor
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7.1 Future Prospects

of two is important to GCE modellers then they should seriously think about including
binary yields. This becomes especially true if the GCE model is sophisticated enough to
include yields as a function of both time and metallicity. If a factor of 10 (or worse) is all
that is required then they can live with their old, probably false, assumptions, but that’s

not a good way to make progress in science.

7.1 Future Prospects

Chapters 5, 6 and 7 answer the primary question: are binary yields important for Galactic
chemical evolution?

However, there are a number of aspects of binary_c/nucsyn which can be improved in
order to constrain some of the uncertain processes at work in binary stars. A speculative

list is as follows:

e The abundances in dredged-up material are currently treated approximately. This
will be looked at soon (Karakas, private communication), with fits to M, Z and

perhaps Nrp for a all the isotopes available, up to and including silicon.

e More intermediate-mass full stellar evolution models are needed, especially for M >
6 Mg and 107* < Z < 0.004. Perhaps some stars with a different mixing-length
parameter would be useful, perhaps TPAGB stars evolved with a different code.

e Detailed massive star surface abundances include only 'H, *He, 2C, *N, 60 and Ne.
It will be necessary to tie the massive-star evolution models to the post-processing
nucleosynthesis code to do any better. Perhaps this is worth doing. This is not
planned at present although Richard Stancliffe is developing a similar nucleosynthesis
code which may be up to the task. It would be better to extend the rapid shell-
burning routines presented here to include massive stars — this was attempted for

this thesis but did not work. ..

e Diffusion of elements in stellar envelopes.
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7 Conclusions - Yields from Single and Binary Stars

e r-process yields — it would be good if even crude theoretical estimates of these yields

were published.
e Accretion and/or stripping of stars due to supernovae (and perhaps novae).
e Pre-MS or MS CNO cycling in the stellar interior. This is very difficult.

e WD surface layers and low-mass helium stars could be treated properly. Detailed

evolution models are required for this.
e A GCE model to test all the above should be developed.

e Incorporation of this model into Hurley and Aarseth’s NBODY code (the gas will be
tricky. ..).

e An easily accessible database of stellar surface abundances with which to compare

the strange stars made by the model. This is a big project but is ultimately necessary.

There is, as always, plenty to get on with. But I am going for a pint or maybe that bottle

of Gigondas that Chris promised me... Carolina suggests a crate!
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Glossary

For Carolina.

AIC Accretion induced collapse. An ONeMg WD accretes material until it is so massive it
collapses to a NS. Possibly a source of r-process nucleosynthesis (Qian & Wasserburg,

2003) or possibly not (Nomoto & Kondo, 1991).
Asymptotic Giant Branch (AGB) See EAGB and TPAGB.
Barium star A star with a very strong Ball 4554 line.
binary_c As BSE but written in C, not the evil Fortran.
binary_c/nucsyn The combination of binary_c and the nucsyn library.
Binary Star A star born with a nearby companion star.

BSE The rapid Binary Star Evolution code of Hurley et al. (2002). Similar to SSE but for

binary stars.
Carbon Star Red giant with surface abundance ratio N¢/No > 1.0 .
Carbon-Oxygen White Dwarf (COWD) See white dwarf.

Core-Helium Burning (CHeB) The stellar evolution phase between the GB and EAGB

in which the star burns helium steadily in its core.
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Glossary

Dray Lynnette, or a reference to her massive star models.

Dwarf Carbon Star A carbon star which is not a giant, formed by accretion of carbon-rich

material.

Early Asymptotic Giant Branch (EAGB) A shell helium-burning giant star with a large,

cool, convective envelope.

Eggleton Stellar evolutionist (Peter) or a reference the code he wrote or the models made

with this code for SSE/BSE.

First Dredge Up The mixing of hydrogen-burned material which occurs as the star as-

cends the giant branch.

Giant Branch (GB) A hydrogen shell-burning star which has a very large convective en-

velope. Because the envelope is large it is cool so these are often termed Red Giants.

Helium Star A star which has a high surface abundance of helium and very little hydrogen,

up to 1 — Z (in the Dray models).

Helium Main Sequence (HeMS) A star which burns helium in its core and has no hy-

drogen envelope.

Helium Giant Branch (HeGB) Similar to the GB but with shell helium burning instead

of shell hydrogen burning.

Helium Hertzsprung Gap (HeHG) A phase of stellar evolution between the HeMS and

HeGB associated with relatively rapid core contraction.
Helium White Dwarf (HeWD) See white dwarf.

Hertzsprung Gap (HG) A phase of stellar evolution between the MS and GB associated

with relatively rapid core contraction.

Hertzsprung-Russell Diagram (HRD) A plot of log L vs log Teg often used to help explain

stellar evolution.
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Karakas Amanda, or a reference to her models.
Main Sequence (MS) The phase of core hydrogen burning that all stars experience.
MSSSP John Lattanzio’s version of the Mount Stromlo stellar evolution code.

Novae Thermonuclear explosions caused by accretion and ignition of hydrogen-rich ma-

terial on to a white dwarf.

nucsyn The synthetic nucleosynthesis code presented in this dissertation. See also Izzard

et al. (2004); Izzard & Tout (2003, 2004).

Nucleosynthesis The cosmic formation of atoms more complex then the hydrogen atom

(OED).
Oxygen-Neon-Magnesium White Dwarf (ONeWD) See white dwarf.

r-process Rapid neutron capture which leads to the production of heavy metals, thought

to occur in supernovae, perhaps in neutron star mergers or AIC explosions.

Roche-Lobe Overflow (RLOF) Mass transfer which occurs when a star becomes so large

(or so close to its companion) that its surface material is transferred to the companion.

Second Dredge Up The mixing of hydrogen-burned material into the stellar envelope

which occurs as the convective envelope develops on the EAGB.
Single Star A star born alone in space. See also binary star.

SSE The rapid Single Star Evolution code of Hurley et al. (2000). This code mimics a
detailed stellar evolution code for L, M, M., R etc. by the use of analytic formulae.

The resulting model runs in fractions of a second rather than hours or days.

s-process Slow neutron capture which leads to the production of heavy metals, thought

to occur in TPAGB stars (see Clayton, 1983; Busso et al., 2001).
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Supernova (SN, plural SNe) An explosion resulting from either stellar core-collapse (type

IT1/Tb/Ic) or thermonuclear explosion of a white dwarf (type Ia).

Thermally Pulsing Asymptotic Giant Branch (TPAGB) A twin shell-burning (hydro-

gen and helium) giant star with a large, convective envelope.

Third Dredge Up The mixing of helium (and some hydrogen) burned material into the
stellar envelope caused by thermal pulses (see TPAGB).

Tout Everything (French) or an r-less fish. According to the OED also “A thieves’ scout

or watchman” which sounds about right!
WC, WN, WO See Wolf-Rayet.

White Dwarf (WD) The final stage in intermediate- and low-mass stellar evolution — the
degenerate remains of the stellar core. Three subclasses exist, helium white dwarfs
(HeWDs), carbon-oxygen white dwarfs (COWDs) and oxygen-neon white dwarfs
(ONeWDs), all with different progenitors.

Wolf-Rayet (WR) A star with a spectrum of broad emission lines (due to enormous mass-
loss rates) similar to an O or B star but dominated by carbon (WC subclass), oxygen

(WO subclass) or nitrogen lines (WN subclass).

Zero-Age Main Sequence (ZAMS) The time at which hydrogen burning begins in the

stellar core, conventionally ¢ = 0 in stellar evolution.

232
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Al NeNa

With «, 3, v and § as before (section 2.9) and number densities of **Ne...?3Na as w, z, y

and z the eigenvalue equation is

—a 0 0 ) w w
o = 0 0 T T
g =\ ) (A1)
0O B - 0 Yy Y
0O 0 v =90 z z

As is typical in this sort of problem there is no unique solution to this set of equations
however one variable (z in this case) can be set to 1 and the other variables w, y and z
evaluated as functions of z. The eigenvector is then normalized according to the initial
conditions by fixing up the A; in eq. (99). Note that when o« = 0 there is a problem because
the determinant is zero, so the solution is ignored on timesteps where this happens and
recovers nicely for the next timestep with only a minor glitch in the surface abundances.

Writing out the equations in full

—aw + 0z = \w, (A2)
aw — fr = N, (A3)
B —yy = Ay (A4)
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and

Yy — 0z = Az.

The first two can be combined to give

()\i+ﬁ>
w = X
(0%

and

Then

or in terms of the 7’s

Normalization is the obtained from the full equation
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T20<)\@' -+ L)

T21
1

1

T21()\i+%)

L 7—207—23<)\i -+ %)(Az +

1

720

) |

which can be calculated easily because 7; and \; are known.

(A5)

(A8)

(A9)

(A10)



Al NeNa

U(t) = NnenaUog + Z A MU,

i=1,2,3

(A1)

at time ¢t = 0 and where NyenaUg = U, is the equilibrium solution. Everything is

known including the abundances U(t = 0) (subscript 0 on the number densities) from the

previous timestep, except the A;. The exponential terms are unity at ¢t = 0 and AyUj is

the equilibrium solution so

20N, 20N, Tao(Ai + %)
21Ne 21Nee 1
Ut =0) = "= + > A 1
22Ne0 22Nee i=1,2,3 T21(>\i+$)
I 2Nay | I *Na, | | T20T23(Ni + %)()‘z + %) i

The deviations from equilibrium at ¢ = 0 are then

1 1 1
AZONG = 20Ne0 20 Nee = AlTQO()\l -+ —) -+ A2T20<)\2 -+ —) —+ A37-20()\3 + —) y
T21 T21 T21

A21Ne = 21N60 2t Nee = A1 + A2 -+ Ag

and

1
37’210\3 + L) .

T22

AQQNGZQZNGO 2 Nee = Al + A2 1 -+ A

7'21(>\2+ —)

T22

7’210\1 + L)

T22

These can be rewritten as

AZONG = Ala —+ Agb —+ AgC,

A21Ne = A1 + A2 —+ Ag

(A12)

(A13)

(Al4)

(A15)

(A16)

(A17)
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and

AZQNG = Ald -+ AQ@ -+ Agf (A]_S)

so solve for A; to find

A?Ne-A?'Ne — (£4) (A%Ne — A?'Ne)

Ag = , (A19)

(5= 1=+ (f - d)

20Np _A2INe — _
A, — A*Ne -A*!Ne — Az(c — 1) (A20)

(b—1)
and
Al = AQlNe - AQ - A3 . (A21)
Substitutea:A1+ b_)\2+,r,c_)\3+7.2lad:ﬁa :mand
722 722

= ———— to give the constants A; and hence the solution (phew!).
7'21()\3+T22) g

A2 MgAl

The following is the general solution to the MgAl cycle assuming 27 Al acts as a sink — more
correctly this is the solution to the MgAl chain. The solution used in section 2.10 assumes
the rate of input to the cycle, I, is zero, an assumption which works well when compared

with the Monash models. A useful result is the solution to the differential equation

g4+ Ay =a+ ) fe (A22)

which is

:_+Z<)\ %) e+ <yo—%_z)\€i%> e (A23)

The first equation of the chain can be rearranged as
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A2 MgAl

d24Mg - 241\/[g

=] — A24
dt T24 ’ ( )
the solution to which is
Mg = agy + boge” /™ (A25)
where agy = To4l and by =** Mg, — aos. The Mg equation can be arranged as
d251\/1g 25Mg B 24Mg Q24 bay “t/oa
+ = =—+_—¢
dt T25 To4 Toa  To4
=y + e ™ (A26)
which has the solution
PMg = ass + byse ™™ + cpze ™ (A27)

L — L) and cy5 =% Mg, — bys — ags. The 26Al equation is

— / . N
where Ao5 = To50oy, b25 = b24/<% p—

d26Al 26A1 251\/[g
+

dt Téﬁ 725
=+ Byt e (A28)
where
1 1 1
— = — (A29)

Tog Toe! TB326

and (l/25 = &25/7’25, b/25 = b25/7'25 and Cl25 = 025/7'25. The solution is

26A1 = Q9g + 5266_t/T24 + 0266_t/T25 + d266_t/7l (ASO)

Al _ 1 1 A 1 1 __26
where Q26 = T Qgs, b26 = b25/(7 — a), Cog = 025/(7 — E) and d26 = Alo — Q96 _b26 — C96.
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Substitution into the 2Mg equation gives

dQGMg N 261\/[g B 26A1

= abg + bhge V™ 4 chge ™ 4 dhe ™ A31
o P 2 26 (A31)

where a/26 = a'26/7_6267 bIQ6 = bg@/TﬁQG, d = 026/7_626 and d/26 = d26/7—526- SO,

26Mg = f26 + 9266715/724 -+ h26€7t/7—25 -+ i26€7t/7/ + j'26€7t/726 (A32)

where fos = Taeag, 926 = b/ (5 — 77)s has = e/ (5 — 52), 26 = dig(5; — 77) and

j26 :26 MgO — f26 — 926 — h'26 — i26' Flnally fOI‘ 27A1

d27Al 26 Mg 26A1
= +

/

>0 (A33)

which is of a slightly different form to the other equations. This can be rewritten

d*"Al
dt

- féG + gé(ie_t/TM + h,266_t/725 + 'ilzﬁe_t/Tl + jé66_t/7'26 +

ays + bzﬁe_t/T24 + czﬁe_t/T25 + dzﬁe_t/T/ (A34)

where fis = fos/T26, 9o = 926/ T26, hog = hos/Tas, the = lo6/Tos, Jos = J26/Ta6, Qg = 26/ Tag,

bl = bag/Tag, Chg = Cag/Tag and dis = dag /7. This can be further simplified to

d* Al
dt

_ a27+b27e—t/7'24 —1-0276715/725 +d27e*t/7'26 _|_f27€*t/7" (A35)

_ / _ / _ / 5! 5
where agr = fig + a3g, bar = go + big, Car = hog + By, dor = Jag and for = g + d.

Integration gives

27A1 = a27t — (b27TQ46_t/TQ4 —+ 0277'256_t/7—25 + d277'266_t/7—26 + f277'/6_t/7l)+COIlSt (A36)
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A3 The Portinari et al. (1998) Method

where the constant of integration is found from the initial value 2"Aly so the full solution

is

TAL = agt — (5277246_t/T24 + 0277256_t/T25 + d277266_t/T26 + f277"e_t/7/) +

2T Alg + (barTos + CorTos + darTas + forT') . (A37)

Psychological help is available to readers who make it this far, but prepare your liver for

it.

A3 The Portinari et al. (1998) Method

It is easy to remove the envelope from a star in the rapid nucleosynthesis model because
the mass and composition of the envelope are known. After this however it is impossible
to know the abundance of the matter in the CO core ejecta. The method of Portinari
et al. (1998) is used to calculate the abundances in the ejecta of an exploding CO core
according to the models of WW95. Such a method is required because the yields published
by WW95 are for the entire star and do not include mass loss prior to the supernova.

Portinari’s notation is as follows:

M total mass of the WW95 model
Mco mass of the CO-core of the model

7 metallicity of the model

E;  total ejected amount of species i, taken from WW95 tables
EP*  newly synthesized and ejected amount of species ¢

X©  initial abundance of species 7 in the model
Ef*t amount of species i contained in the layers external to Mco
EC©  amount of species i ejected by the CO core

M., mass of the region unaffected by CNO burning (approximately the mass of the envelope)
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Firstly Mco is derived. It is assumed that all expelled hydrogen and helium originates in
the envelope and that the metallicity of the envelope is the same as the initial metallicity.

Then

M_MCO :EH+EH6+Z<M—M00) (A38)
which gives
E Eye
Meo =M — % . (A39)

The origin of each isotope is then considered.

e "N and '¥C can only exist in the envelope because they are destroyed by helium

burning and are not produced during the explosion. Thus ESS = ES9, = 0.

e 2C and '°0 are converted by CNO cycling to '3C and “N. The amount of *C and

1N formed during the life of the star are estimated from

Egelzg = Fc13 — X813<M - MCO) (A40)
and
B = Exy — X%(M — Mco) . (A41)

It is them assumed that new N forms from 2C and 'O proportionally to the initial
abundance X2 + X such that

Xe
Eg" = Xo(M — Mco) — E&SS — B

_— A42
MoX9 4 X9 (A42)

where the first term is the '2C present at stellar birth, the second is conversion to

13C and the third to “N. A similar expression results for 16O

X5
Eg' = X5(M — Mco) — EX"

e A43
MOXO + XY (A43)
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A3 The Portinari et al. (1998) Method

The contribution to the yields from the CO core is then

ESC = Ec — EE* (A44)
and
ESC = Ep — ES. (A45)

e N is destroyed by the CNO cycle but can be produced by neutrino capture during
the explosion. The envelope is treated as a CNO-cycled region and a region which

has not experienced hydrogen burning of mass

En

Menv - F

(A46)

The total ®N ejecta is the made up of that from the unburned envelope and that

created from neutrino capture which is assumed to scale with oxygen fraction in the

CO core
ESO

Eﬁ% - (EN15 - MeanJO\HS) B
O

(A47)

e No 7O or 0 survive helium burning, so ESY = ESS = 0.

e The a-capture isotopes °Ne, Mg, 28Si, 32S and °Ca are produced during helium
and carbon burning. Outside the CO core their abundance is the initial abundance

and it is a simple matter to remove the hydrogen- and helium-rich envelopes:
EfY = Exe — (M — Mco) XY, (A48)
etc.
e Fe is produced during silicon burning and also results from the decay of *°Ni:

ESO = Ep, — (M — Mpo) X2, + Eni . (A49)
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e Other isotopes are corrected in an identical way to the a-capture isotopes, the enve-

lope is just removed from the ejecta.

The WW95 fits given below are to the mass fraction of an isotope in the ejecta, i.e.
E®C /Mco, to allow various prescriptions for the remnant mass. This is incorrect because
the fitted ejecta are strictly only true for the WW95 core/remnant masses, but is the best

that can be done presently.
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B1 First Dredge Up

Stars which undergo first dredge-up during their first ascent of the giant branch have their

abundances modified by

M — 2)?
AX = ap; + (bp1 +cp1Z)exp {—%7)} +
Bl

07 oy

gaB1

(631 + f31Z) exXp |:— (B].)

Then XI/LII = XHI — AX and XI/_Ie4 — XHe4 + AX (1e AXHe4 = —AXHl) The CNO

abundances are changed by

M
= | ———= ] Xc12 X min(0.36,0.21 + 0.05M /M B2
0= (57 ) e xmin /M) (B2

if M/Mg < 1.0833 4 20.833Z, otherwise

g = Xciz x min(0.36,0.21 4+ 0.05M /M) (B3)

such that

Xt =Xow — g, (B4)

and
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Xaig = Xnua+ =g

Also

X3 = Xcis+ ape +bpeMpes + cpe Z +
(M — 1.67)2]

(dBﬁ + 636Z) exXp |:—
[B6

Xxis = Xnist+ (apr +bprZ°77) x (14 dps M°P7),

it M < 1.0833 + 20.833Z

M + cpg +dpsZ
eps + fpsZ

X616 = Xois + apsmin(bps, Z) exp | —

gps(MZ)">s

otherwise there is no change in 10,

M B9

CM—ng +epgZ
B9

X617 = Xowrt+ (apeZ + bpgé) )

Xbo1s = Xois+ (apio + bpioM + cpioM? + dB10M3) X

(14 eproM + fBlOMQ) .

Some NeNa and MgAl cycling leads to abundance changes
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B1 First Dredge Up

M + cpi1 + dpii Z)?
XI/\TBZO = XNeQO + Z(aBH —+ bB11Z) exp [_( B11 B11 ) :|

epi1 + f311Z
g (MZ)7, (B11)

€B12 + meZ
gpia(M2)7 (B12)

M + cpia + dp12Z)?
Xll\Ie21 = Xne21+ Z(a312+b3122)exp {_< B12 B12 )}

i M + cpi3 + dpi3Z)?
XNezo = Xwezz +min(0, Z(apis + bp13Z) exp {_( e }

€B13 -+ f3132
gma(MZ)"7 (B13)

: M + cgiy + dgiu2)?
X\azs = Xvazs+ min(0, Z(apia + bpiaZ) exp [_( e ]

epl4 + fB14Z
gpia(M2)", (B14)

/! b ¢
Xnigos = Xwigas + ap15 2770 M +

M Ve
(dpis + ep15Z) exp [— - fB;f = 9p1s } : (B15)
B15

/ A

Xirgos = Xng26 + @(GBIG + bpis M) (B16)
and some pp chain burning gives
/ — 2 3 4

Xies = (apir +bp1rM + cpir M + dpi7M” + ep17M") ¥ (B17)

(1+ fpisM + gpisM? + hpisM?) .

All other isotopes do not change at first dredge-up.
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Eq. (B1)

Eq. (B2)

Bq. (B6)

Bq. (B7)

Bq. (BS)

STQ -0 Q0o o

2.6415 x 10?
1.4576 x 1073
—6.5206 x 107!
5.9183 x 1071
—3.1617 x 1072
6.7782 x 1071
8.5768

1.0833
2.0833

—5.831 x 107°
8.2329 x 1077
2.5644 x 1073
—1.1772 x 107
1.4908 x 1073

4.6566 x 107
—9.8197 x 107°
9.6658 x 1071
—5.4293 x 107!
—2.694

—1.5238 x 1072
0.005
—2.647

—4.5367 x 10!

4.2393 x 1072

1.2685 x 1071

8.5491 x 10*
—3.2798 x 107!

3.1829

Eq. (BY)

Eq. (B10)

Eq. (B11)

Eq. (B12)

Eq. (B13)

SR -0 Qo R

4.3423 x 1073
—4.7218 x 1077
2.33 x 1073
—1.7198
—1.4425 x 101
—1.3455

2.2212 x 107
—2.24360 x 10~°
5.0478 x 1077
—3.6322 x 1078
5.35030 x 10*
9.78910 x 10?

—1.5839 x 107°
6.111 x 1074
—2.6312
—4.6861 x 10*
—3.5043 x 1073
5.9749 x 10*
—5.0424 x 107°
2.6416

1.7876 x 107°
—6.794 x 1074
—2.6323
—4.6303 x 10!
4.0193 x 1073
5.9438 x 10!
6.4432 x 1075
2.7127

—1.2129 x 1073
3.4988 x 1072
—2.6083
—3.1764 x 10!
1.0164
4.0828 x 10*
—6.7756 x 1074
1.7639
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Eq. (B15)

Eq. (B16)

Eq. (B17)

1.267 x 1073

—3.6335 x 107°

—5.1875 x 1077

—4.0811 x 1074

2.9927

2.7474 x 1077

2.87570 x 1074

SR w0 a0 oe

—3.4988 x 1072
—2.6083
—3.1781 x 101
1.0167
4.0854 x 10*
7.0726 x 1074
1.7635

1.9803
2.7008 x 1078
—4.9247 x 107°
—2.5146
—1.1626 x 10*
2.5723 x 1071

—2.6118 x 1074
5.7827 x 107°
—3.9861 x 10°¢
—5.6886 x 10!
6.60510 x 103
—2.05390 x 10°

Table B1: 1st dredge up fitting coefficients.




B2 Second Dredge Up

B2 Second Dredge Up

Second dredge-up occurs in sufficiently massive stars (M pagp, > 0.8 Mg, where M pagp is
the core mass of the star at the start of the (E)AGB) at the end of the EAGB when twin
shell burning begins. Following Renzini & Voli (1981) and Groenewegen & de Jong (1993),
with alterations to better fit the Monash models, the fraction of the envelope which is

hydrogen rich is defined as

M — Mc,ba b
L v v (B18)
while the fraction which is hydrogen-burned is
Mc,ba b — Mé4
Mo — 21 (B19)

where M2 is the core mass just after second dredge-up, which is assumed to be equal to the
core mass at the first thermal pulse M!T”. Then the abundances after second dredge-up

X| are given by

Xin = Xm1 + AXpy (B20)
and
XI,-IeAL = Xttea — AX (B21)
where
AXHI = min [0, (CLBQQ + bBQQM) X (1 —+ CBQQZ)] s (B22)
X/012 =aXci2, (B23)
Xélg = aXCl?) ) (B24)
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Xciz | Xoiz | Xnua
12 i 13 * 14

X X X X X
N15 016 017 o1 | Arir) (B25)
15 16 17 18 17
X5 = aXns (B26)
Xo1 = aXois , (B27)
Xoir = aXoir, (B28)
Xo1s = aXois (B29)
Xpir = aXpir, (B30)
M + dp3; + eps1Z)?
Xlero = Xneoo + (aps1 + b Z + cps Z°) exp (—( py + epn) )
IB31+ gBnZ
hps (M Z)'Bst (B31)
Xeo1 = Xnez1 + (apzz + bp3a Z) M52 + dpsa (M Z) %2 (B32)
Xlerz = Xwezz + (apss + bpssM + CrasM? + dpszsM® + epss M*) x
(1+ gB3sZ + hpssZ® +ipssZ?), (B33)
X1/\1a22 = 07 (B34)
M + epss)?
Xiazs = Xna2z + apss + bpss M + dpss exp <_<f—335)) ; (B35)
B35

Xigos = Xuigas + (aBss + bpssZ + cpseZ?) x (1+ dpsgM + epssM?),  (B36)

X1/\4g26 = Xwigos + (apsr + bpsrZ + cp3rZ?) x (14 dpsyM + eps; M?),  (B37)
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B2 Second Dredge Up

X6 = Xane + max [(apss + bpss()(M —3.5)* ,107° + 107°(M —4)] ,
Xljor = Xawr + (apsg + bpsoM + cpsgM?) X (1 +dp3gZ + ez Z?),
Xpg = Xpa1 +1.0524 x 1077,
Xy = X34 +9.78 x 107%
Xlas = Xg35 +1.02 x 1077,
Xpess = Xress + (apaz + bpasM + cpisM?) X (1 + dpssZ + epazZ?)
Xtesr = Xres? + (apaa + bpaaM + cpuaM?) x (1 + dpuZ + epuZ?)

and

Xtosgs = Xpess + 1.1828 x 1077

(B38)
(B39)
(B40)
(B41)
(B42)
(B43)

(B44)

(B45)
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Eq. (B22) Eq. (B31) Eq. (B32) Eq. (B33)
a| 1.2682x 107" | 1.8626 x 1077 | —7.4506 x 1077 | 3.58090 x 10~©
b | —3.6696 x 1072 | —1.6582 x 107° | 3.7933 x 1076 | —6.09360 x 10~°
c| —2.1922 x 10" | 7.2624 x 10~* 2.4538 3.0817 x 1076
d —2.4443 —3.2682 x 107* | —6.25850 x 1077
e —6.8824 x 10" 2.055 4.09780 x 1078
g —3.4425 x 107! 2.77350 x 102
f 1.2338 x 102 —1.07480 x 10*
g —4.436 x 107° 7.41730 x 10*
h 2.5626
Eq. (B35) Eq. (B36) Eq. (B37)
a| 4191 x107% | —8.475 x 1078 | —2.32830 x 1078
b | 6.7055 x 1078 | —1.4843 x 1074 1.673 x 1074
c 2.8874 4.4544 x 1073 | —5.0904 x 1073
d| 3.295 x 10~ —1.2662 —1.2364
e —1.6914 2.8752 x 1071 2.8173 x 1071
g | 2.4136 x 1072
Eq. (B38) Eq. (B39) Eq. (B43) Eq. (B44)
al] 23283 x 1078 | 1.4994 x 1077 | —4.4983 x 107 | 3.7532 x 10~
b| 4.048 x 107 | —1.4435 x 1077 | 2.1979 x 1077 | —2.4214 x 1077
c 3.1665 x 10~ | —2.6077 x 1078 | 3.3528 x 1078
d —1.1753 x 102 3.2299 x 102 5.5655 x 10!
e 3.6373 x 10° —3.5382 x 10° 2.4978 x 10°

Table B2: Second dredge up fitting coefficients.




B3 The TPAGB, Third Dredge-Up and HBB

Bq. (17) | Z=0.02 ] Z=0.008 | Z=0.004 | Z = 0.0001
a7 | 0.038515 | 0.057689 | 0.40538 | 0.40538
bir 1.41379 | 1.42199 | 1.54656 | 1.54656
ciz | 0.555145 | 0.548143 | 0.55076 | 0.55076
dy; | 0.039781 | 0.045534 | 0.054539 | 0.054539
err | 0.675144 | 0.652767 | 0.625886 | 0.625886
g7 3.18432 | 2.90693 | 2.78478 2.01
hiz | 0.368777 | 0.287441 | 0.227620 | 0.227620

Table B3: Coefficients for the core mass at the first thermal pulse. The { indicates the
value is not from the K02 fit but was introduced to fit the few Z = 0.0001 stars

available.
Eq. (22) | Z=0.02 | Z=0.008 | Z=0.004 | Z = 0.0001
99 -3.821 -4.189 -4.255 -4.5
boo 1.8926 1.8187 1.8141 1.79

(a3 = —2.080 — 0.353Z + 0.200(Meny /My, + o — 1.5)
dyy = —0.626 — 70.30( My 17p /Mo — O)(AM, /M)

Table B4: Interpulse period coefficients.

B3 The TPAGB, Third Dredge-Up and HBB

The coefficients for eq. (17) are interpolated from table B3 (taken from Karakas et al.,

2002). The coefficients for the fit to interpulse period (eq. 22) are shown in table B4. The
coefficients for the fit to the TPAGB radius (eq. 29) are in table B5. The coefficients for

the minimum mass for dredge-up M™" (eq. 37) are in table B6. The coefficients for the fit

t0 Amax (eq. 40) are in table B7. The coefficients for eq. (42) are in table B8. Coefficients

for the fit to HBB temperature (eqs. 61 and 62) and density (eq. 65) are in table B9.
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Z =0.02 Z =0.008 Z =0.004
MiTp a b c MiTp a b c MiTp a b c
0.5 —0.2035 0.76686  —0.04375 0.5 —0.2911  0.7483 0.0909 0.5 —0.2134  0.6987 0.2606
1.0 —0.5329  0.8262 —0.1155 1.0 —0.5538  0.80213 —0.0107 1.0 —0.4634  0.7568 0.0379
1.5 —0.6605  0.8373 —0.1719 1.5 —0.8166  0.8559  —0.1124 1.5 —0.7134  0.8150 —0.1838
2.0 —0.5865  0.7955 —0.20114 2.0 —1.054 0.9037  —0.2091 2.0 —0.9633 0.8731 —0.4075
2.5 —0.6829  0.8113 —0.3111 2.5 —1.192 0.9273  —0.2860 2.5 —1.179  0.9140 —0.3109
3.0 —0.7794  0.8270 —0.4211 3.0 —1.232 0.9251 —0.3206 3.0 —1.426  0.9610 —0.2966
3.5 —0.8999  0.8471 —0.3653 3.5 —1.273 0.9229 —0.3552 3.5 —1.247  0.9060 —0.2734
4.0 —1.0203  0.8672 —0.3095 4.0 —1.314 0.9207  —0.3898 4.0 —1.068  0.8509  —0.2502
4.5 —0.9528  0.8435 —0.3492 4.5 —0.8763  0.8095 —0.3542 4.5 —0.7239  0.7619  —0.2970
5.0 —0.8853  0.8198 —0.3889 5.0 —0.4391  0.6983  —0.3188 5.0 —0.3803 0.6729  —0.3439
5.5 —0.7029  0.7701 —0.3836 5.5 —0.4893  0.7043 —0.33F 5.5 —0.4450  0.6829 —0.33f
6.0 —0.5205  0.7204 —0.3784 6.0 —0.5395  0.7102 —0.33" 6.0 —0.5096  0.6929 —0.33"
6.5 —0.2955  0.6692 —0.3451 6.5 —0.5896  0.7162 —0.33" 6.5 —0.5743  0.7028 —0.33"
7.0 —0.0705  0.6180 —0.3117 7.0 —0.6397  0.7222 —0.33t 7.0 —0.6389  0.7128 —0.33f
7.5 0.1545 0.5668 —0.2784 7.5 —0.6899  0.7282 —0.33F 7.5 —0.7036  0.7228 —0.33f
8.0 0.3796 0.5156 —0.2451 8.0 —0.7400  0.7341 —0.33F 8.0 —0.7682  0.7328 —0.33f
8.5 0.6046 0.4644 —-0.2117 8.5 —0.7902  0.7401 —0.33F 8.5 —0.8329  0.7428 —0.33f

Table B5: TPAGB Radius coefficients (eq. 29). For masses outside the range of the Monash
models the values are extrapolated. Values marked with  are put in manu-
ally because the Monash models break down before the envelope becomes small
enough to fit them.
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Mmoo 7 =0.02 Z =0.008 | Z=0.004
a 0.732759 0.672660 0.516045
b —0.0202898 | 0.0657372 0.2411016
& —0.0385818 | —0.1080931 | —0.1938891
d 0.0115593 0.0274832 0.0446382

Table B6: Coefficients for the fit to MM, taken from Karakas et al. (2002).

Amax | £ =0.02 | Z=0.008 | Z=0.004
a | —0.764199 | —0.609465 | —1.17696
b 0.70859 0.55430 0.76262
& 0.0058833 | 0.056787 | 0.026028
d 0.075921 0.069227 | 0.041019

Table B7: Coefficients for the fit to Amax, taken from Karakas et al. (2002).




B3 The TPAGB, Third Dredge-Up and HBB

a | 2.7536 | e 2.1213
b | 6.3895 | f | 1.4655 x 102
c| 2416 | g 5.4606
d| 11732 | h 2.2534

Table B8: Coefficients for eq. (42), the fit for V.

Eqgs. (61) and (62) Eq. (65)
a1 4.44290 x 1072 Qg5 3.05860
a2 —2.27390 x 1072 bes 9.51050
be2 —8.28510 x 1072 Ce5 —7.20180 x 107!
Ce2 1.67930 des —3.65330
dgo —1.161390 x 107!
€62 1.63740 x 107!

Table B9: HBB temperature and density fit coefficients.
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Eq. (43) (44) (46) (47) (48)

Tsotope 12¢ 160 Y 20Ne 21Ne

a 4.7318 x 10~ 1 2.4845 x 10—2 9.6488 x 10~° 1.8208 x 1073 7.3832 x 107°

b —2.3708 x 1071 | —2.1839 x 1072 | —1.5286 x 1073 | —5.0381 x 10=° | —7.1809 x 10~5

c 5.1112 5.5602 x 101 —2.498 8.5105 x 104 —1.7287

d 6.0359 x 1072 6.0325 x 1073 —3.774 x 10~1 4.8022 x 10 0.01

—2.0683 —2.3757 x 1071 1.1418 x 10~1 —4.413 x 1075 1.0173 x 10!
f —4.0986 x 1073 | —4.7830 x 10~* 5.74 x 10!
1.8593 x 10~1 2.3482 x 102

Table B10: Coefficients for the fit to intershell 2C, 60, °F, 2°Ne and ?'Ne.

Eq. (49) (50) (51) (52) (53) (55)
Isotope 22Ne 23Na 24Mg 25Mg 26Mg 27TAl
a 1.0003 3.4002 x 107* | 2.6581 x 10~% | 1.6325 x 101 4.0583 x 1074 1.7768 x 10~
—1.2107 x 1078 | —6.8279 x 10~° | 8.6264 x 10~° 1.6882 x 1073 | —1.0221 x 10~3 | 5.5616 x 10~°
c 6.8356 2.7554 x 1073 1.099 x 10~3 —1.658 x 1071 | —2.1225 x 107% | 1.6534 x 10~*
d 3.477 x 1072 9.0052 x 10~4 3.696 x 10~4 1.8538 x 1072 1.9959 —3.5782
e —1.1586 —1.5735 x 1072 | 8.1325 x 1073 | —3.7719 x 10~4 —6.3068 x 10!
! —2.5370 —3.1204 —3.1909
g —4.0209 x 101 6.7662 —3.78 x 10t
h 5.2392 x 10~1 3.0857 x 101
i —8.5182
J 1.3321 x 10~2
k —1.4586 x 103
l 1.0693 x 102

Table B11: Coefficients for the fit to intershell 22Ne, »*Na, Mg, Mg, Mg and 27Al.

B4 Intershell Abundances

Tables B10 and B11 give the coefficients to the intershell abundance fits.
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B5 Radius Truncation at the AGB Tip

B5 Radius Truncation at the AGB Tip

The SSE algorithm provides a method for ensuring a smooth transition from the tip of
the AGB to the WD track in the HR diagram by truncation of the stellar radius. This
is required because as the stellar envelope is lost on the AGB the radius increases quickly
and the star becomes very red. However, when the envelope is small the star becomes blue
and eventually, when the envelope is lost, is a white dwarf. The following is a method to

simulate this behaviour. A parameter

MenV . L "
p=—y; min (5.0,max [1.2, {L_o} }) (B46)

is defined where Ly = 7.0 x 10* and k = —0.5. Then if z < 1.0 the luminosity and radius

L' =L, (3) (B47)

are perturbed according to

L.
and
wen (2 s
where
(1+0°)(u/b)?
= 7 B4
o (B49)
and
a L+ (p/c)? ’
with
2.5
b = 0.002 max (1, M) , (B51)
¢ = 0.006 max (1, %) (B52)
and

J=1In (}%) | (B53)

The values of L. and R, are the luminosity and radius in the absence of a stellar envelope.
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Eq. (107) Eq. (108) Eq. (109) Eq. (110) Eq. (111)
a 2.298 —2.74 —7.914 —7.5x 1071 1.1705
1.9 173.0 4.157 x 10~2 2.3x 1071 0.4743
¢ 0.4 160.0 1.8933 —1.8762 x 10—2
d 3.0 4.937 —5.3736 x 10~1 6.7386 x 10~1
e 143.7 0.1 4.9012 x 10~3 3.3929 x 10~ 1
-3
f| 11212 %1073 { 05vVZ z <10 6.0426 2.37380 x 102
1 otherwise
14+¢ £>1
g | 7.2913 x 10~2 1 01<¢e<1 9.5713 x 102 —2.2379 x 101
4 £€<0.1
h 1.8796 105 0.39818
i | —2.2871 x 102 0.75613
10-° —2.0772
k —0.73418

Table B12: Coefficients for the fits to Y, Ba, Pb and Kr.

For AGB stars these are the luminosity and radius of a white dwarf, as defined by the SSE

model. The stellar luminosity and radius are then given by L' and R'.

B6 The S-process

See tables B12 and B13.
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The S-process

Element A | Fitted to isotope. .. (B) Q119 b1
Ce Ba 1.0839 | —0.79546
Dy Ba 1.0153 | —1.4938
Er Ba 0.98322 | —1.7823
Eu Ba 1.0558 —2.8742
Gd Ba 1.043 —1.8747
Hf Ba 0.95175 | —1.3953
Hg Ba 0.85404 | —0.74736
La Ba 1.0547 —1.2285
Lu Ba 0.94413 | —2.4119
Nd Ba 1.0817 —1.0742
Os Ba 0.99086 | —1.6381
Pr Ba 1.0858 —1.8215
Re Ba 0.98727 | —2.3456
Sb Ba 0.92138 | —1.6938
Sm Ba 1.0591 —1.7621
Sn Ba 0.89942 | —0.18915
Ta Ba 0.96036 | —2.4097
Te Ba 1.0389 | —0.53706
Tl Ba 0.87297 | —1.1273
Tm Ba 0.97431 | —2.6813
W Ba 0.97918 | —1.5259
Xe Ba 0.8605 | —0.45371
Yh Ba 0.95063 | —1.1202
Rb Kr 0.99092 | —0.62874
Bi Pb 0.92089 | —1.68050
Ag Y 0.93724 | —1.8116
Cd Y 0.92210 | —0.60916
In Y 0.91670 | —1.7001
Mo Y 0.94158 | —0.42414
Pd Y 0.94622 | —0.76471
Ru Y 0.95103 | —0.89359
Sr Y 0.99743 | 0.69429
Te Y 0.93201 | —1.9894
Zr Y 0.97750 | 0.41723

Table B13: Coefficients for eq. (112).
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Mzams < 25Mg | 25 < MZAMS/M® <38 | 38 < MZAMS/M® <55 | Mzams > 55 Mg
01 1 1 0 0
0o 0 1 0 0
03 0 0 1 1
04 0 0 1 0

Table B14: ¢ factors for eq. (B54).

B7 Massive Hydrogen Stars

B7.1 Hydrogen 7 = 0.02

The surface hydrogen abundance is given over the entire mass range by a set of Fermi-like

functions

dXy dXs
XHI — Xi,Hl - 51 1 + SlAM_dMl - 21 + SZAM_dm2 -
dXy dXs
3 1+ SllogAMflongl - 41 N SlQogAMflongg + AXy (B54)

where AM = Myans — M is the mass lost (also referred to as depth) by the star relative
to its main-sequence mass. The various Fermi functions are activated over certain mass
ranges by the factors d;...04 as given in table B14. The break depth for each function is
given by the dM; factors, the slope factors s; determine the steepness of the break and the
dX; determine the magnitude of the drop relative to the MS abundance. A Xy, is defined

below.
First define a Fermi function which is 0 at low mass and 1 at high mass with the break
at around M = 75 Mg

furs = F(M;,1,1,0.2,75) (B55)
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bt

Eq. (B57) Eq. (B58) Eq. (B59)
a 2.5977 2.8655 x 10~' | 2.6759 x 1072
b | —3.053 x 107! | —=1.1037 x 10! | 3.5589 x 1073
c| 1.1911 x 1072 | 8.8883 x 1073
d | 1.4044 x 107°
e | 1.6137 x 102
f —2.3087
g | 11335 x 10~
Eq. (B60) Eq. (B63) Eq. (B64)
a | 2.7291 x 107! 7.543 x 10! 0.32
b | —6.4511 x 1073 2.0927 0.18
c| 74506 x 107 | —2.9313 x 10* 0.3
d 0.74 2.7694 x 10? —42.5
e | 6.9329 x 107! | —2.7142 x 10!
fl 2.062x 1072 5.2789 x 1071
g —2.5971 x 1073
Eq. (B65) Eq. (B66) Eq. (B67) Eq. (B76) | Eq. (B77) Eq. (B82)
a | 1.4174 x 1071 | —=7.5216 x 10' | —7.0918 x 10~! | 6.357 x 10! 9.4401 9.527 x 1073
b | 5.5388 x 10! 1.3218 5.6122 x 1072 30.479 514.99 —1.1142 x 10~*
c —1.25 x 10! 109.61 —1.3925 x 10!
d 3.5 x 1071 0.16
Table B15: Massive hydrogen star fitting coefficients.
where F'is a Fermi-like function
1
F(z,a,b,c,d) = a/ll ___ZE:;] (B56)

then
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dMl(O) = (1 — furs)(apsr — besrMzams + CB57M%AMS + dB57M‘ZO)AMs) +

furs(epsr + frsr Mzanvs + gB57MgAMS) . (B57)
For Myzawvs < 20 Mg, this is corrected to dMl(l)

dMY = max [0.2, min <dM1(O), apss — bpss Mzanms + CB58M%AMS)} (B58)

otherwise dMl(l) = dMl(O) .

For Mzaus < 31 Mg, dX\” is given by

Xm(O) = apsg + bpso Mzams (B59)
otherwise
Xm(O) = fz31 X fuss ¥ [(1 — f1) % (aBso + breoMzans + creoMyans)+
Jimax(dpeo, epeo + ]\;[fﬂ) (B60)
ZAMS
where
fz31 = 1+ 0.3max(0, Z,/0.02 — 1) (B61)

is a metallicity-correction factor, Z; is the instantaneous metallicity and

1 4 82=Mzams) 55 < ), M, < 62
fuss = 4 ) zans/Mo (B62)
1 otherwise

creates a smooth transition in the 55 to 62 M, mass range.
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The slope factor s; is given by

—100 MZAMS < 25 M@ ,
loglo 3&0) — max (—107 min(—a363 + bB63MZAM57 —2)) 25 S M%(;\/IS < 38, (B63)
— (CB63 + % + fBesMzams + gB63M%AMS> M > 38 Mg .

The factors AXs,, dM, and sy are only required over a limited mass range defined by 9,

and 54

© bpea
dX2 = QB4 + 1+ CfgngS*dBm 5 (B64)
dMY” = apes + bees Mzans (B65)
and
logy, 3;0) = max(—10, apgs + bpes Mzans) - (B66)
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B7.2 Wind Loss

To cope with wind loss define

dMl(a) = (Mzams — Muc) +

max(0, aper + bper Mzams, Caer + dperMzams) (B67)

which forces the drop in hydrogen when the star leaves the MS and changes for M < 54 M,
and M 2 54 Mg

fsa = F(Mzans, 1,1,0.01,54) , (B68)

(any” — ;)

SO
2f54
X(l) _ X(O) B
dXV = fxdx3 (B71)
and
AMP = (1 — f5,)dM™ + foadV (B72)
For small Xy; such that Xy — Xm(l) < 0.1 a correction is applied
Z 3 (1)
AXim = max |1, 5| x max [0,5 « 1073 (AM — dM{™) Xim (B73)
otherwise
AXy =0. (B74)

262



B7 Massive Hydrogen Stars

B7.3 Metallicity Corrections

Metallicity corrections are then applied. A function fz which is 1 below Z; = 0.01 and 0
above Z; = 0.02 with a smooth transition is defined by

B 1
fz = 1+ 0.11030.015-2) *

(B75)

The slope s; may be redefined because of metallicity affecting the convection zones

(Mzams — bpre)?

s1 = [zapre exp | — (B76)
CB76
and a metallicity dependent mass
Miow = aprr + bprrZ (B77)
such that
dX, = dXV (1 +6X1f7) (B78)
dM; = dMP + M, f, (B79)
dXy = dXV + 65X, (B8O)
and
dMy = dM” + § M, (B81)

where the X and 0M are given in table B16. The surface hydrogen abundance X;OI)H is

then calculated from eq. (B54).

There are further slight complications owing to metallicity, a minimum hydrogen abun-

dance prior to the helium star phase in low-Z stars
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Mass Range 0X, oM,
Myans > Migw 0.75 4+ 0.05Myzams —3.08 + 0.35Myaws
MZAMS < 45 M®
MZAMS > Mlow —0.1 0
Mzanms = 45 Mg
3
Mzanms < Migw % 0
AM <1.5
Myzanms < Miow 02(075 + 0-05MZAMS) —3.08 4+ 0.35Myams
AM > 1.5
Mass Range 0X5 oMy s1 change
Myanvs > Miow 0 0 S1 = 8‘11 if 8‘11 > 0.1
Mzanvs < 45 Mg otherwise no change
Myans > Miow | —05f,dXS) | —9.515 — 4727, | s = s if s2 > 0.1
Myzanvs > 45 Mg otherwise no change
Myanvs < Miow 0 0 no change
AM < 1.5
Mzavs < Mgy 0 0 51 = 8%
AM > 1.5

Table B16: Metallicity-correction terms for massive hydrogen stars.
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X)((lf)ﬂ — max (mln [02, (]_ + a,ngMZAMS + bgggM%AMS)(]_ + CBSQZt)dBSZfZ} 7X)((0})11>
(B82)
and the final bump as the helium core approaches the surface for stars with dM, > 0,

AM > dMy and Myzavs < 45(2/002)

X = X{hy — max |0,0.5X0) (AM — b)) (B83)
Finally,
XXHI = max [0, miH(X>(<2})H, Xi,XHl)] (B84)

because Xxm cannot increase and cannot fall below zero.

B7.4 Helium and Metals

Surface helium is calculated from

¥ 1—Xm — 7, M — M. > 1M,
Hed4 —
min [1 — Z;, max {1 — Z, — (M — M,),1 — Xg1 — Z;}] M — M. < 1Mg
(B85)

where the correction for M — M. < 1 Mg ensures a smooth transition to the helium star
phase (for which Xyes &~ 0.95). This is particularly important in binary stars where the
star may jump from the HG to the HeMS because of enhanced mass loss.

The coefficients for the 0 and '2C fits are given in tables B17 and B18. The constant

C124 18 given by

4.3012 x 107! — 8.3078 x 107 by9y byaq < —0.423
Cl124 = (B86)
4.6923s x 1071 — 1.3706b194 biag > 0.423.
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Bq. (123)
a —0.4 x 10 2 + 1.1468 x 10~ '/0.010- 19394 zanis ~6.8227 g | 8.48070 x 10"
b 3.2732 — 4.8939 x 1072 Mzams + 3.7616 X 107 M2\ 1s h | 1974 x 1072
c 18.88 — 1.1831 exp(—(In Mzans — In 17.8)2/0.5076) i | —4.3243 x 104
d —13.936 — 0.68025 exp(—(In Mzans — In 16)2/0.97626) j | 2.5574 x 107
e | 0.8064 — 0.81104/(1 + 1.46381-1967Mzams+55-336) 1 7509 x 107" M3, | b | —4.4266 x 1071
f 0.70766 + exp [3.7462 x 10~2(Myzans — 82.122)] I 1.146 x 107
Table B17: Coefficients for 1g16.
Eq. (124) a b

MZAMS/M® < 25.19

MZAMS/M® > 66.32

25.19 < MZAMS/M® < 46.21

46.21 < Mzams/Mg < 66.32

3.8576 — 3.0414 x 10~ Myams
+6.295 x 1073 M2, \1q
—1.4495 x 1072
+6.7851 x 10™* Myzams
1.119 x 1072
+6.7851 x 10~* Mzams
—2.325 x 1072 4 1.0086 x 10™3Mzams
—5.467 x 1075MZ 5 uis

—1.2725 x 10 4 1.0165MzaMms
—2.1193 x 1072 M2 s \15
—6.3494 x 107! + 5.5562 x 1072 Mzams
—9.4467 x 107 M2 s \is
2.3992 x 10~ — 7.6394 x 1073 Mzams
+3.0795 x 10™° M2 s \is
2.3992 x 1071 — 7.6394 x 10~ 3 Mzans
+3.0795 x 107> M2\ 15

Table B18: Coefficients for a and b ¥q1a.

The factor ;3 is given by

Y14
0.02

713 =

min {0.1, max {104, 1.1254 x 107! (1 —

1.009

I+ O.SJWZAMS32.051):| } . (B87)

The factor 4 is positive when there is little *N, negative when N constitutes the ma-
jority of the CNO present representing the decline of *C when CN burning approaches

equilibrium and zero when there is little hydrogen left to burn,

—2.0 Xxm > 0.3 andXN14/XCNo > 0.5
Y14 = 1 Xxm > 0.3 andXN14/XCNO <0.5
0 Xxm <0.3.

(BSS)
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B7 Massive Hydrogen Stars

Note that the initial *C abundance must be doubled in order to match the MM94 models.

The reason is unclear.
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B Analytic Fits

B8 WWO95 Fits

Figures B1 to B6 show the comparison of the analytic fits to the WW95 CO core collapse
(model A) SNe ejecta abundances after the envelope is removed according to the method
of Portinari et al. (1998), see appendix A3. The fitting formulae are shown below. *°Ni is
grouped with 5Fe prior to fitting. The fits are made to all the WW95 isotopes, however
some are not currently used in the synthetic model or are expected to decay rapidly. For
this reason *°Co is treated as °Fe, ®2Fe is treated as 52Cr, **Cr as **Ti, *Ti as **Ca, %'Ni

as 9ONi, 31S as 32Si, 3°Si as 28Si. Other trace elements are dealt with in appendix B10.

Xper = max(0, —1.6578 x 1077 + (1.9828 x 1076 —

log,o Z
2.2016 x 10~% exp(—9.1326 x 10~ %(Mco — 13)%) —

6.0303 x 107%/Mco)) (B89)
X1i7 = max(0,9.4064 x 107% — 4.6566 x 107" Mco + 6.1132 x 107 Mo *0™2)  (B90)
Xpey = max(0, (—9.3132 x 1071 + 4.61 x 1077 2) Mco *"*?) (B91)

Xgio = max(0, (—8.3819 x 107 + 4.2869 x 107°2) Mo~ *20%) (B92)

Xcin = max(0, (1.4063 x 107% +2.4038 x 107°Z)Mco V™7 +

(9.3132 x 1071 + 1.7416 x 107" Z) Mco) (B93)

1
Xpi1 = max(0,—9.7789 x 107 + Z(—4.7563 x 1075 /Mco +

0810
9.3132 x 107? — 6.5193 x 10™"Mco)) (B94)
Xeiz = max(0, (0.21486 — 2.9967 x 102 log,q Z) Mco777) (B95)
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Figure B1: Mass-fraction fits to the WW95 CO core-collapse yields (in alphanumeric or-
der) for 2°Al to “*Ca. Red lines show the WW95 data, corrected for envelope
removal, the blue lines show the fits.
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Figure B2: As figure B1 for 3Cl to %Cu.
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Figure B3: As figure B1 for Cu to %“Ge.
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Figure B4: As figure B1 for Ge to 2°Ne.
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Figure B5: As figure Bl for 2! Ne to 28Si.
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Figure B6: As figure Bl for 2Si to Zn.
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Xx13 = max(0, min(1, max(0, (Z — 0.0002)/1.8 x 107%))
(—3.9861 x 107" 4+ 8.9584 x 1075/ Mco)) (B96)

Xciz = Xxuu =0 (B97)

Xciw = max(0,2.0684 x 10722 Mgo %™ —3.9593 x 1072

exp(—Mcgo — 2.8975 + 36.8747% /8.9678 x 107?)) (B98)

Xnis = max(0, —7.5772 x 1070 + (=3.5698 x 10~* + 1.7455 x 1072Z) /Mco +

(3.3997 x 107* — 7.335 x 107%2) /Mo ™) (B99)

Xois = max(0,0.6179 + (1 — 6.59242)(—0.88519 + 0.50179Mco — 0.10799Mco? +

1.2249 x 102 Mco® — 6.853 x 10 *Mco? + 1.4418 x 107°Mco®)) (B100)

Xoi7r = Xois =0 (B101)

Xpig = max(0,2.9942 x 107° + 8.1509 x 10 log; Z + 0.61495Z Mco 13454 4
(1.7899 x 107° + 4.1949 x 10*Z) exp(—(Mco — 3.0389)%) +

3.6787 x 107" Mco) (B102)

Xnezo = max(0, (8.359 x 1072 — 0.289757) /(1 + 0.1Mc0=6) 4

(0.10872 + 0.476282) exp(—Mco — 3%/1) + 6.5491ZMco ) (B103)

Xnez1 = max(0,4.027 x 10722075936 pf,o~1-3673) (B104)
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Xnaze = max(0,1.6997 x 1075 exp(—(Mco — 3.2211)°/0.74294) +

(8.6427 x 1077 — 1.8283 x 107°Z) /(1 4 0.1Mco=6-2539y) (B105)

Xyezz = max(0,0.18885Z(1 + 0.41251 Mo — 2.0495 x 10~ 2McoMco) +

0.487027°% 15151 N[y ~8:6199) (B106)

Xnazs = max(0,3.1171 x 107* 4+ 7.4621 x 10722) /(1 + 0.1Mc0=6) ¢
(5.2008 x 10~* + 0.150192) exp(—(Mco — 3)*/1) +
0.51976Z Mco ™ ?) (B107)

Xugos = max(0,2.6277 x 1072 exp(—(Mco — 2.8538)%/2.1509) +

6.8362 x 102 exp(—(Mco — 10.823)%/16.875)) (B108)

XNa24 - 0 (B109)

Xyges = max(0,5.3532 x 107° + 0.396692 Mo *'%% — (5.5216 x 107° + 0.179762)

exp(—(Mco — 5.0875)*/0.87357)) (B110)

Xaws = max(0,5.7129 x 107°Z/Mco — 6.6934 x 107°% x
log,o Z exp(—Mco — 3.8609 — 0.39476 log,, Z*/1.7666) + (6.6046 x 1077 +

1.2425 x 107%log,, Z) exp(—(Mco — 11.407)?/17.018)) (B111)

Xaigos = max(0, Z(0.8209 — 0.33616Mco + 5.9571 x 1072 M, —

2.9439 x 10 Mgo® — 6.3509 x 107°Mco®* 4 5.5777 x 107 Mco®)(B112)
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Xapr = max(0,0.42196Z/Mco + (2.5901 x 1072 +0.173017) x
exp(—Mgao — 3.7616 + 30.04522 /0.1805) + (2.4404 x 107 + 0.418777) x

exp(—Mgo — 11.308%/19.571)) (B113)

XA128 - 0 (B114)

Xgios = max(0,7.2177 x 10 2 exp(—(Mco — 1.72)°/1.324) +
0.11199 exp(—Mco — 4.99982/4.9635) + 4.7649 x 1072

exp(—(Mco — 12.116)%/6.2636)) (B115)

Xgigg = max(0, (2.0326 x 10~* + Z((0.1975 — 5.1798 x 10" *Mco +
3.2181 x 10 3 Mco? 4+ 1.276 x 1073 Moo® — 1.3227 x 10~ Mo +

3.2 x 107°Mco?)))) (B116)

Xgizo = max(0,1.8135 x 107* + Z(0.21305 — 4.472 x 10" 2Mco +

4.0417 x 1073 Mco® 4 3.7584 x 10~ *Mgo® — 3.0211 x 107°Mco?))(B117)

Xpz; = max(0,(1.3211 x 107 + 0.396152)(8.589 x 1072 + 4.5103 x 10> Mco —
4.5734 x 10™*McoMco) 4 4.5711 x 10~ exp(—(Mco — 5.3796)%/0.63588) +

0.5 % 0.1691321%% exp(—(Mco — 12.915)°/6)) (B118)

Xgzo = max(0,3.7549 x 102 exp(—(Mco — 2.0771)%/0.8852) +
6.0379 x 102 exp(—(Mco — 5.0281)/3.4905) + 1.465 x 1072 x

exp(—(Mco — 12.424)? /30.0432)) (B119)
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Xg33 = max(0,3.6815 x 10™* exp(—(Mco — 5.1833)?/3.8048) +

4.5482 x 10737 exp(—(Mco — 13)%/5) + 3.9742 x 10722 Mo~ “™2[B120)

Xgzs = max(0,0.132752% ™7 exp(—Mco — 4.8027%/0.56836) +

3.6367 x 10727 exp(—Mco — 132/5) + 0.27296Z Mo *9%%)  (B121)

Xeigs = max(0, (—5.9742 x 107° 4 5.4213 x 107°Z + 1.8366 x 10~ Mo ") +

(3.8797 x 10~* + 2.0306 x 102Z) exp(—(Mco — 5.6587 + 35.182)%)) (B122)

Xg3s = max(0,—1.3132 x 1077 + Z(3.7111 x 10~* — 3.5211 x 10~ * Mo +
2.1899 x 10~ *Mco? — 4.0579 x 1075 Mao® +2.942 x 107 Mot —

7.3574 x 107*Mco°)) (B123)

Xae = max(0, —2.5457 x 107 + 1.0799 x 102 exp(—0.53427(Mco — 5.2381)%) +
3.3881 x 107 exp(——0.43453(Mco — 13.415)°) +

1.9731 x 1072 /Mco) (B124)

Xszs = max(0, (—4.7404 x 107 + Z((3.6823 x 10™* + 7.035 x 107" Mco —

1.3262 x 107 Mco? — 1.7136 x 107" Mco?)))) (B125)

Xeaigs = max(0,3.0722 x 107°Z 4 2.5118 x 10~ %~ log,, Z~*%%*®

(14 22.691 exp(—(Mco — 5)°/1.0614))) (B126)
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Xagr = max(0,(0.33039 + ((1 + 2.4937 x 107*2))(—0.33037 +
4.6862 x 107 exp(—0.56232(Mco — 6)%) — 2.1183 x 107° x

exp(——7.2928 x 10~2(Mco — 13)°)))) (B127)

Xazr = max(0,2.2537 x 1073 Z(1 — 1.4143 x 107 *Mco) + 1.1438 x 1077 x

exp(—Mco — 5.49052/0.13329) + 6.4414 x 1072Z Moo ?1447) (B128)

Xams = max(0,—5.771 x 1073 + (1.221 x 1073 + 0.116422) x
exp(—0.43682(Mco — 4.6935)%) + (5.4536 x 107 4+ 1.6611 x 1072Z) x

exp(—7.1143 x 1072(Mco — 13.231)%) 4 5.5681 x 1072 /Mco)

Xkso = X30(2.6397 x 107° 4 5.6705 x 107°Z 4 1.0578 x 10™*/Mco) + (2.5639 x 10~* +

3.5011 x 1073Z) exp(—Mco — 5.3582%) — 4.6268 x 107 °Mco) (B129)
(B130)

where x39 = 1 if M < 7Mg, 0.5 otherwise,

Xxg = max(0,(4.0047 x 107° + 3.0579 x 107°Z) + (2.1607 x 10™" +
3.7918 x 107 Z) exp(—(Mco — 5.3619)%) — 1.8626 x 10~°Myo) (B131)

Xcaro = max(0,(3.2196 x 1072 + (log;o Z)((2.8027 x 10™* — 3.0256 x 10 *Mco +

7.16 x 107" Mco? — 5.9506 x 1075 Mco® 4+ 1.6391 x 1075Mco?))))  (B132)
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Xaro = max(0,—1.0151 x 107" + Z(3.8561 x 10~* — 1.4072 x 10" *Mco +

2.7806 x 107> Mco? — 2.0517 x 107 Mco® + 5.0291 x 107*Mco?))(B133)

Xky = max(0,(—1.0058 x 10~" + Z(—6.335 x 10~* +9.1181 x 107° x

exp(—0.46868(Mco — 6)%) + 6.531 x 10 ™% exp(—9.5955 x 1072(Mco — 13)°) +

1.6003 x 107 /Mco))) (B134)

Xcan = max(0, (0.25003 + (1)(—0.25003 + 1.3091 x 1077 exp(—0.52349(Mco — 6)*) +

1.6894 x 1075 exp(——0.357(Mco — 13)%) + 1.2462 x 107°/Mco)))  (B135)

Xcarz = max(0,(8.6986 x 1077 4 3.3701 x 1073Z) exp(—(Mco — 2.3283)%/0.75542) +
(2.4213 x 10 + 4.9544 x 1032 exp(— (Moo — 4.8862)%/1.2788) +

(7.2903 x 1074 2Z) exp(—(Mco — 13)%/2)) (B136)

Xoas = max(0, —5.2154 x 107 4 6.0534 x 107°Z + 1.0154 x 107 Mo 37 +

(1.4715 x 1077 4 3.3948 x 107*2) exp(—(Mco — 5.7289 + 34.4542)*[B137)

Xseas = max(0, —3.4459 x 107 + (1/logy, Z)(5.9921 x 1076 — 7.3016 x 10~

exp(—0.61822(Mco — 6)?) — 5.3374 x 10 % exp(—8.6405 x 10~2(Mco — 13)°) —

1.3611 x 107°/Mco)) (B138)

280



B8 WW95 Fits

Xcaw = max(0, —6.482 x 107" + Z(—3.577 x 107 + 5.2375 x 10~ x
exp(——0.42545(Mco — 6)°) + 3.5446 x 1073 exp(—8.3893 x 10~ 2(Mco — 13)%) +

7.6211 x 107°/Mco)) (B139)

Xris = max(0,0.24988 — 0.25018 + 4.3198 x 107 exp(—0.55151(Mco — 6)%) +

2.6702 x 10~ exp(—0.10078(Mco — 13)%) + 6.92 x 10~ /Mco) (B140)

Xeoas = max(0, (3.183 x 107* — 7.4008 x 107° Mo + 1.1601 x 10™° Mo Mco —

4.6287 x 107" Mco®) Z1-5%%) (B141)

Xrigs = max(0,2.0955 x 107 + (1 — 17.6487)(9.2611 x 107° — 4.3083 x 10 " M¢o +

6.8359 x 107" Mgo? — 4.3772 x 105 Mco® + 9.3132 x 107 Mco*))  (B142)

Xsess = max(0,8.475 x 107° + Z(—4.1524 x 107° + 1.43 x 107 * x
exp(—0.50195(Mco — 6)?) + 7.3904 x 10~ exp(——0.30076(Mco — 13)%) +

1.8636 x 10™*/Mco)) (B143)

Xrige = max(0,1.7881 x 107° + Z(2.7772 x 107 — 1.5644 x 10~* min(Mco, 10) +
5.5381 x 10~*min(Mco, 10)* — 8.9342 x 10~ °min(Mco, 10)* +

6.1318 x 10~%min(Mco, 10)* — 1.4808 x 10~ "min(Mco, 10)°)) (B144)

Xoats = max(0,2.794 x 107 +2.3051 x 107*Z?(1 — 0.33082Mco + 4.3534 x 1072 Mg —

1.6247 x 107° M) (B145)
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Xrigr = max(0,1.0245 x 1078 + Z(—2.1705 x 10™* 4 2.1569 x 10~* x
exp(—0.48117(Mco — 6)?) + 2.5242 x 10~ exp(—0.19382(Mco — 13)?) +

9.9758 x 10~*/Mco)) (B146)

Xvar = max(0,(2.2165 x 107 + (6.5267 x 107° — 5.8208 x 10"

0810
exp(—0.70109(Mco — 6)%) — 5.0208 x 1075 exp(—0.10639(Mco — 13)%) —

1.8238 x 107°/Mco))) (B147)
Xcarr = max(0,1.0002 x 10752 Moo ™*?) (B148)
Xcass = max(0,1.6886 x 107227 4+ 7.282 x 1072 Z*Mco %) (B149)

Xcms = max(0, (0.32965 + ((1 —2.6197 x 107*2))(—0.32994 + 9.8321 x 107° x
exp(—0.54506(Mco — 6)%) + 2.4945 x 10~ exp(—0.15862(Mco — 13)%) +

1.152 x 107%/Mco))) (B150)

Xrus = max(0,(—5.5786 x 1077 + Z(—4.339 x 107% — 8.9494 x 10™* x
exp(——2.5976 x 102(Mco — 6)°) 4+ 5.1282 x 1072 x

exp(—7.065 x 1072(Mco — 13)%) + 1.0106 x 102/Mco))) (B151)

Xyig = max(0,5.2061 x 1077 + 1 (2.047 x 107% — 1.7869 x 107" x

0810
exp(—1.4953(Mco — 6)%) — 1.3599 x 1077 exp(—0.52025(Mco — 13)%) —

8.5179 x 107%/Mco)) (B152)

X9 = max(0,4.6799x 1075 Mo 1% +(2.7288x 10~ " —log, Z) sin(0.87475 Mco+2.4944))
(B153)
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1
Xewg = max(0,1.4156 x 107° + i (—4.0769 x 107° +1.4344 x 10" Mco —

0810
1.7853 x 107 Mco® + 9.5926 x 1073 Mco® — 1.8626 x 107 "Mco?))  (B154)

Xrige = max(0, —1.0058 x 1077 +1.4146 x 10722031649 ) 1, =458 1.9 8378 x 107°Z) (B155)

Xriso = max(0, (—1.4901 x 1077 + Z(—5.0397 x 10™* + 5.988 x 107" x
exp(—0.18137(Mco — 6)%) + 6.3748 x 10 % exp(—8.432 x 107%(Mco — 13)°) +
9.4991 x 10~*/Mco)) (B156)

Xemo = max(0, Z(8.6358 x 1072 — 2.7397 x 10*Mco + 7.3554 x 10~*MZ, —

1.2169 x 107" Mco® +9.045 x 107 Meo* — 2.3562 x 107" Mco®))  (B157)

Xvyso = max(0, 2.4748 x 107247 exp(—(Mco — 4.9803)%/0.16529) + 3.5334 x 107°2)
(B158)

Xamst = max(0,1.8999 x 107° + (2.9597 x 107% — 2.503 x 10™°Mco +

logyg Z
6.7046 x 107 Mco® — 5.7463 x 107" Mco® + 1.5832 x 107 *Mco?)) (B159)

Xys = max(0,1.1101 x 10747 + 1.7499 2% Mo 29%7) (B160)

Xewst = max(0, (1.7146 x 1076 + 1.7017 x 1074 Z) exp(—(Mco — 4.4201)?/23.081) +

(4.0317 x 107% — 8.0697 x 107°Z) exp(—(Mco — 13.557)%/0.19604))  (B161)

Xresy = max(0,6.5481 x 107* + ((1 — 26.1132))((3.85 x 107% — 2.4642 x 10> Mco +
7.9771 x 107 Mco? — 1.2733 x 10" *Mco® + 8.9742 x 10~ Moot —

2.2538 x 107" Mgo°))) (B162)
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Xerse = max(0, (—3.8091 x 1077 + 3.9504 x 10737 + 3.296 x 1073 M~ T837+3.0616x10°2y)
(B163)
Xamse = max(0,8.1407 x 10~ (sin(0.51574 max(Mco, 4.5) + 1.4096)2 +107°)) (B164)

Xerss = max(0, —2.6263 x 1077 +4.4046 x 107*Z +4.0249 x 10* x
MCO—11.49+3.8341><102Z) (B165)

Xamss = max(0,5.0263 x 107 + (—1.5165 x 107° — 9.9844 x 10™°M¢o +

log,, Z
2.6331 x 107" Mgp? — 2.2817 x 107 Meo® + 6.4261 x 1078 Mco?))  (B166)

Xress = max(0, (5.5767 x 107° 4 1.0795 x 10722) exp(—(Mco — 1.9967)%/11.602) +
(3.0128 x 1079 4 6.3525 x 1074 2Z) exp(—(Mco — 13.243)*/0.38068))  (B167)

Xpess = max(0, (4.1293 x 1073 + 0.59975Z) exp(—(Mco + 4.7831)%/70.719) +
(8.2181 x 1077 4 9.5626 x 10722) exp(—(Mco — 13.965)?/2.1023) —

1.3905 x 10" °Mco ™ 2/2) (B168)

Xose = max(0, —3.6135 x 1077 + Z(2.067 x 107 — 9.179 x 10*Mco +

1.6529 x 10~ *Mco? — 1.1805 x 107" Mco® + 2.8964 x 10~ Mco*) B169)

Xumss = max(0, (4.3586 x 1077 +1.1709 x 1074 Z) exp(—(Mco — 3.4779)°/13.024) +
(5.5879 x 1075 + 3.654 x 107°Z) exp(— (Moo — 13.614)°/0.8564))  (B170)
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Xumss = max(0,—6.482 x 1075 + Z(5.3055 x 1072/Mco — 1.0986 x 1072 +

7.3427 x 107" Mco)) (B171)

Xpess = max(0, (—1.171 x 1077 4 2.5273 x 107 2)sin(0.34111 Mo )* +

1.1096 x 10~*/Mco) (B172)

Xeoss = max(0, —3.7361 x 107* 4 1.7239 x 1073 Mo~ 0-68637+9.03512 1

1.6495 x 10~ exp(—(Mco — 13)*/2)) (B173)

Xeoss = max(0,9.4078 x 1072 exp(—(Mco + 4.3821)%/14.174) + 9.6675 x 107 x
exp(— (Moo — 6.2599)*/1.0877) + (6.6154 x 10~* +9.6361 x 1072Z) x

exp(—(Mgo — 13.278)%/0.52483)) (B174)

Xress = max(0,5.8588 x 1072 + (1 — 19.2562) x (1.3941 — 0.9707Mco + 0.2534Mco? —
3.1295 x 107> Mgo® + 1.8128 x 10 Mgp®* — 3.9517 x 107°Mco®)) (B175)
Xnise = 0 (B176)

Xres7 = max(0, (—9.519 x 107 + Z(0.11965/Mco — 2.1258 x 1072 + 1.6133 x 10> Mco))
(B177)

Xnisy = max(0,0.3152 + (1 — 6.4787 x 10722)(—0.34595 + 2.6003 x 102 x
exp(—0.58657(Mco — 6)%) + 2.7454 x 1072 exp(—8.6268 x 10~ %(Mco — 13)°) +

6.1326 x 1072 /Mco)) (B178)
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Xeosr = max(0,8.6579 x 107 exp(—Mco + 1.3351%/2.3631) + 1.1253 x 10~* x
exp(—Mco — 6.1126%/0.89975) 4 (4.1985 x 107° + 1.7376 x 10727) x

exp(—Mcgo — 13.1022/1.0372)) (B179)

Xcoss = max(0,4.936 x 1077 4 1.2275 x 1073201809y, =5-6769) (B180)

Xress = max(0,—7.0939 x 107% + Z(7.1429 x 107% 4+ 1.5213 x 107% x

exp(—0.20179(Mco — 13)) + 1.4908 x 1072/ Mco)) (B181)

Xniss = max(0,6.2091 x 107" + (0.36944 + 20.2817) / Mco™***) (B182)

Xniso = max(0,0.32885 + (1 — 1.5171 x 10722)(—0.33067 + 2.4491 x 10~* x
exp(——0.48058( Mco — 6)7) + 1.5852 x 10~ exp(—0.10387(Mco — 13)°)
+3.9969 x 107%/Mco)) (B183)

Xcuso = max(0,6.3134 x 107° + ((1/1og,y Z))(1.8652 x 107* —
2.0008 x 107° exp(—0.48434(Mco — 6)%) — 1.4974 x 107* x

exp(—0.11287(Mco — 13)%) — 4.4787 x 1074 /Mco)) (B184)

Xresg = max(0, —8.6986 x 1077 + Z((5.8629 x 107® — 1.3175 x 10 Mo +
1.0159 x 10™*Mco? — 2.5118 x 107°Mco?))) (B185)

Xcoso = max(0, —2.9448 x 107% + Z(—2.5593 x 107 4 4.5253 x 107* x
exp(—0.24621(Mco — 6)%) + 4.9644 x 107 exp(—9.5259 x 107%(Mco — 13)°) +

1.4861 x 107%/Mco)) (B186)
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Xzmso = max(0,1.5225 x 107 + log,, Z(6.6008 x 10~* — 3.0585 x 1077
exp(——4.187(Mco — 6)) — 5.118 x 10~ exp(—9.7036 x 1072(Mco — 13)%) —

1.601 x 107 /Mco))) (B187)

Xcoso = max(0,4.6252 x 1072 Z1?) (B188)

Xreso = max(0,—7.851 x 1077 4 Z(9.8426 x 107 /Mo — 1.4094 x 1072 +

5.7954 x 1075 Mco) (B189)

Xeugo = max(0,—3.9837 x 1077 + ((1 — 8.91272))((3.1126 x 1072 — 2.0375 x 10 *Mco +
5.0437 x 10 Mgo? — 5.856 x 10™*Mco® + 3.1933 x 107> Mco®* —

6.5845 x 107" Mco?))) (B190)

Xyiso = max(0,(—3.3104 x 1072 +2.6334 x 1072Z + 8.4455 x 107*/Mco) +
(2.3476 x 107 — 3.4932 x 10722) exp(—(Mco — 6)°/5.7333) + (3.265 x 1072 +

2.838 x 10722) exp(—(Mco — 13)?/22.522)) (B191)

Xcowsr = max(0,2.4884 x 107* + (14 1.40752)(2.7586 x 10™* — 2.1834 x 10~ Mo +
5.9052 x 107 Mco? — 7.3633 x 107° Meo® + 4.2431 x 107 Meo* —

9.127 x 107*Mco?)) (B192)

Xnigt = max(0,0.33021 + (1 — 8.3345 x 10732)(—0.33022 + (1.184 x 107° +
0.5 x 1078/2) exp(—0.33469(Mco — 6)° + 3.4356 x 107> x
(14 Z/0.02) exp(—0.59448( Mco — 13)%))) (B193)
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Xoogt = max(0, —6.0908 x 1077 4 Z((4.5014 x 1072 — 1.7287 x 10 3M¢o +
2.3732 x 107 Mco? — 1.3014 x 107 °Meo® +

2.4308 x 107" Mco™))) (B194)

Xomet = max(0,7.3435 x 1075 + log,, Z(3.7124 x 107° — 2.441 x 107 x
exp(—0.44437(Mco — 6)%) — 3.0977 x 107% exp(—8.1119 x 10~%(Mco — 13)%) —

6.0245 x 107° /Mco)) (B195)

Xowe = max(0, —3.3509 x 1076 + (1.9745 x 1074 —

logyo
3.2678 x 107" exp(—0.42344(Mco — 6)%) — 1.8603 x 107 x

exp(—0.10484(Mco — 13)%) — 4.2485 x 107*/Mco)) (B196)

Xomge = max(0,7.2528 x 1077 + (1 + 88.9112)((1.2906 x 10~% — 9.7666 x 10> Mco +
2.6775 x 103 Mco? — 3.3416 x 107  Mco® + 1.9155 x 107 °Meo* —

4.0885 x 107" Mco?))) (B197)

Xnigz = max(0, —1.1763 x 107% 4+ Z(—7.3365 x 107% + 1.5037 x 1072 x

exp(—0.33164(Mco — 6)%) + 2.6194 x 102 exp(—0.29156( Mco — 13)%) +

2.6171 x 107%/Mco)) (B198)
Xnigs = max(0,4.4969 x 1072Z71) (B199)
Xzngs = max(0,5.7624 x 1074 Mo 4507 738743107 (B200)
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Xeouwss = max(0,7.0129 x 1077 4+ Z(—2.0903 x 107 + 6.2356 x 10~* x
exp(—0.41043(Mco — 6)%) + 2.454 x 10 exp(—9.7155 x 107%(Mco — 13)°) +
4.5247 x 107%/Mco)) (B201)

Xzngr = max(0,2.5732x 1070 49.8341 x 107527038212 )1, 30853 1.7 2031 x 107 Z) (B202)

Xaags = max(0, 1.0581 x 10757046221 pf=3-3291) (B203)

Xowss = max(0, —2.0489 x 107 4 Z(3.7803 x 107° 4 7.0552 x 107 x
exp(—0.30149(Mco — 6)%) 4 5.3909 x 1077 exp(—0.67062(Mco — 13)%) +

6.3572 x 107%/Mco)) (B204)

Xnigs = max(0,2.3888 x 1072 21%9(15.17 — 3.3035Mco + 0.82123 M2,

—3.8254 x 102M3,)) (B205)

Xaess = max (0, 7.7393 x 107777 0-39108 pf, , =3.2087) (B206)

Xnigs = max(0,—3.9302 x 1077 4 Z((5.5209 x 10™% — 3.5727 x 10 *Mco +

9.3786 x 10 *Mco? — 1.1642 x 107  Mco® + 6.7139 x 107 Meo* —

1.4435 x 107" Mco?))) (B207)
Xaess = max(0,2.794 x 107827029218 jj,,—5-3194) (B208)
Xomes = max(0,1.374 x 107°2%2%99%) (B209)
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Xeouss = max(0,—9.2108 x 1077 + Z(2.2031 x 107* + 7.7515 x 10~ x
exp(—0.22287(Mco — 6)%) + 1.7971 x 1072 exp(—0.10853(Mco — 13)%) +
6.0481 x 107*/Mco)) (B210)

Xeags = max(0,2.6841 x 1077222219107 o, ~4397T) (B211)

Xaass = max(0,1.4629 x 10742 Mo =18 12,183 x 1076 x
exp(—(Mco — 5.8965)*/0.57897) 4 4.3048 x 10742 x

exp(—(Mco — 13.348)%/0.68231)) (B212)
Xewgs = max(0,—3.0734 x 107 + Z(5.6063 x 107° + 1.491 x 10°Mco —
5.4799 x 1075 Mgo? + 4.8149 x 107" Mco® — 1.3039 x 107*Mco*)(B213)

Xaess = max(0,3.0963 x 1073201329 pfo,, ~48438) (B214)

Xznee = max(0,—9.5926 x 1077 + Z(3.6081 x 10~* + 2.6664 x 10~*
exp(—0.38998(Mco — 6)?) + 3.1659 x 1072 exp(—0.16104(Mco — 13)%) +
2.2357 x 107%/Mco))) (B215)

Xaagr = max(0,1.2107 x 1078 + Z(—9.4119 x 107% 4 7.2764 x 107° x
exp(—0.35611(Mco — 6)%) + 1.1531 x 107° exp(—0.18887(Mco — 13)%) +

2.2628 x 107° /Mco)) (B216)

Xzngr = max(0,(—3.39 x 1077 4+ Z((2.6072 x 107* — 1.7072 x 10> Mco +

2.0857 x 107°Mco? — 1.0673 x 107 Mco?)))) (B217)
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Xaesr = max(0, 1078 x 6.5193 x 1079772611 p [ ~2843) (B218)

Xeass = max(0,1073(—1.5873 x 107% + 8.43232°7%1) x

(—1.5288 4 4.0354 Mo — 0.22847M2)) (B219)

Xaegs = max (0, 1.2595 x 107° 2018288 jf,,~6-009) (B220)

Xznes = max(0, —3.6098 x 1075 + Z((2.9337 x 1073 — 9.8971 x 10~* Mo +
2.3653 x 107 Mco? + 2.5966 x 107> Mco® — 4.4061 x 1075 Mco* +

1.3504 x 107" Mco))) (B221)

Xaagy = max(0,—2.0396 x 1077 + Z(6.2491 x 10~* — 5.0702 x 10~*Mco +
2.2036 x 10" *Mco? — 3.2652 x 107> Mao® + 2.02 x 107 Mot —

4.4703 x 10~®Mco?)) (B222)

Xaegy = max(0,9.3132 x 1071 + Z(—5.5041 x 10~ + 9.0543 x 107° x
exp(—0.48928(Mco — 6)%) + 4.1453 x 10~% exp(—0.3509(Mco — 13)%) +

2.0796 x 107%/Mco)) (B223)

Xzngo = max(0,0.104192%274 Mo~ O8187T) (B224)

Xaero = max(0, (—3.4925 x 1077 + Z(3.9595 x 10~* 4 2.4171 x 10~*
exp(—0.52855(Mco — 6)°) + 1.7799 x 1072 exp(—0.2796(Mco — 13)*) —
6.8349 x 107°/Mco)) (B225)

Xcaro = max(0,8.6158 x 104 2">%%) (B226)
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Xeer1 = max(0,4.6168 x 107221319 exp(—(Mco — 11.468)%/31.855)) (B227)
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B9 Belczynski et al. (2002) BH Mass Prescription
B9 Belczynski et al. (2002) BH Mass Prescription

The Belczynski et al. (2002) BH mass is coded according to a prescription provided by
Jarrod Hurley.
First, M., is set

0.161767M, + 1.067055 M, < 2.5 M
My = (B228)
0.314154 M, + 0.686088 M, > 2.5 M,

then the remnant mass is given by

MCX MC < 5 M@
Mxs/pn = My + (M. —5) (M — My) 5< M. /Mg <76 - (B229)
M M > 7.6M,

B10 Trace Isotopes

In order to increase the speed of the code some rare isotopes are considered to behave as
their more abundant cousins with the same proton number. This is dealt with easily in the
code at compile time and is treated in a way that can easily be extended to include these
trace elements for particular studies at a later date. There is also a high speed option in
the code to bin all the trace isotopes into one isotope and quietly ignore it. Table B19

shows the conversions.
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Isotope(s) Treated as Isotope(s) Treated as
110’140 130 51Mn,53Mn,54Mn Mn
24Ny 23N g, 53Fe,55Fe,59Fe 6Fe
28A1 27A1 57Ni 56Ni
3SS 328 55CO,5SCO,GOCO 5900
3601 3501 63Ni,65Ni 64N
37AI. At GOZH,61ZH, 62ZH63ZH,65ZI1 6471
4lca,45ca,47ca 440& 60Cu,62Cu,64Cu,66Cu 651
45Ti 44Ti GQZn GSZn
438(3 45SC 65Ga, 66Ga,67Ga,68Ga,70Ga 69Ga
4901.,5101. B0y 64Ge,65Ge, 66Ge,67Ge, 68Ge, 69Ge,71Ge 70Ge

48\/,49\/ 51V
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B11 Binary Star Explosions - SNela and Novae

Isotope a b c d

1He 1.885 x 1072 1.919 x 10-1 | —1.90040 x 10~' | 7.398 x 10!
120 3.2448 x 1071 | —=7.5668 x 10~ | 4.4693 x 10! —2.5692
160 7.9324 x 1071 —1.4184 6.7159 x 1071 —2.2394
20Ne 5.6865 x 1072 | —1.1574 x 1071 |  6.0577 x 102 —2.4772
Mg | 6.8268 x 1072 | —1.8269 x 1072 | —5.339 x 1072 —1.9527
28Gj 1.9537 x 1072 | 4.9225 x 10! | —4.2238 x 10! —1.229
328 3.3483 x 107! | —7.4649 x 1071 | 5.2431 x 107! —1.0288

36 A 1.553 x 107! | —4.2591 x 10~' | 3.0771 x 107! 5.0104 x 101
OCa | 4.7899 x 1072 | —1.3997 x 10~' | 1.0286 x 107! 3.8396 x 10!
44y 1.5964 x 10~! | —3.9855 x 10! | 2.5757 x 107! —2.4052
By 1.2483 x 10! | =3.1778 x 107! | 2.0946 x 107! —2.2352
2Fe 3.5674 x 1071 | —9.9596 x 10! | 7.0243 x 107! | —2.2407 x 107!
MFe | —7.9924 x 107! 2.2283 —1.2529 1.3922 x 10*

Table B20: Coefficients to the fits to the SNIa yields of Livne & Arnett (1995).

Isotope Yield Isotope Yield
‘He 0.17 BAr [6.6x 1071
2@ 1.3x1072 | “Ca |39x10™*
60 [15x107%| #“Ti |89x1073
20Ne [23x1076| %Cr [94x1073
Mg | 64x107% | 52Fe | 1.8 x 1072
28Gi | 7.3 x107° | ®Ni 0.45
328 3.0 x 107*

Table B21: Yields from an exploding 0.664 M, WD as calculated by Woosley et al. (1986).

B11 Binary Star Explosions - SNela and Novae

The coefficients for the fits to the alpha elements from Livne & Arnett (1995) are in
table B20. The yields of Woosley et al. (1986) and Iwamoto et al. (1999) are shown in
tables B21 and B22 respectively.

Mass fractions in ejecta fitted to the nova models of José & Hernanz (1998) for accretion

on to COWDs are
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Isotope Yield .
12 8.99 x 1073 | 2°Mg | 2.66 x 107° | 36Ar | 241 x 1072 | *8Ti | 6.11 x 107* | °8Fe | 3.23 x 1073
3¢ 3.30 x 1077 | 25Mg | 2.59 x 107° | 38Ar | 9.90 x 10~% | 4°Ti | 4.39 x 107° | %°Co | 6.25 x 10~*
N 2.69x107% | 27A1 | 247 x107* | “0Ar | 5.19x 1079 | °OTi | 3.51 x 10~* | 58Ni | 4.29 x 1072
BN 5.32x 1077 | 28Si | 2,06 x 1071 | 39K | 5.67x107° | %OV | 9.33x107? | 9ONi | 1.15 x 1072
160 6.58 x 1072 | 29Si | 3.40x 107 | 4K | 4.52x 1076 | 51V | 1.16 x 107* | YINi | 3.58 x 10~*
170 458 x 1076 | 398i | 6.41 x 107* | 4°Ca | 2.43 x 1072 | %°Cr | 3.53 x 107* | 2Ni | 3.69 x 1073
180 6.35x 1077 | 3P | 1.60x107* | *3Ca | 2.22x 1077 | 52Cr | 1.37x 1072 | %Ni | 2.31 x 10~
R 450 x 10710 | 328 | 1.22x 1071 | #Ca | 295 x107° | ®3Cr | 1.38 x 1073 | %3Cu | 4.88 x 10~
20Ne 6.22x107% | 338 | 1.92x107% | 46Ca | 4.73x 1072 | %*Cr | 1.60 x 1073 | 5°Cu | 2.04 x 106
2INe 1.39 x 1076 348 1 2.04x 1073 | *8Ca | 1.64 x 1076 | °Mn | 7.05 x 1073 | %4Zn | 3.10 x 107°
22Ne 421 x107% | 38 | 1.31x1077 | %5Sc | 2.09 x 10~7 | %*Fe | 591 x 1072 | %Zn | 6.42 x 1075
23Na | 2.61x 1075 | 35Cl | 7.07x 1075 | #6Ti | 1.12x 107° | °6Fe | 7.13x 107" | 7Zn | 6.55 x 10~7
Mg | 4.47x1073 | 37Cl | 2.26 x107° | 4"Ti | 1.56 x 1079 | ®"Fe | 1.67 x 1072 | %%Zn | 8.81 x 1078

Table B22: My, SNIa yields of Iwamoto et al. (1999)’s DD2 model.

"H = 107° x max (0.0, ((=7.0188x 1072) X fooy +(—1.0192 x 10*) x Myyp +(7.6612x 107%)))
(B230)
*He = 107° x max (0.0, ((4.0714 x 107?) X fooy + (—1.66430) x My + (2.00320))) (B231)

He = 107° xmax (0.0, ((—3.1323 x 10™%) X fuoy +(8.8501 x 10%) x Myyp +(2.2102 x 101*)))

(B232)

Be = 107" x max(0.0, ((1.52750) x Mwnp + (—1.16350))) (B233)

"B = 107° xmax(0.0, ((—=3.1665x 10™%) X fuoy +(6.4289 x 107%) x Myyp +(—4.0634 x 107°)))
(B234)

2C = 107" x max(0.0, ((9.0502 x 1071) X fior + (1.0682 x 107?) x Myyp +(—1.0916 x 107%)))
(B235)

BC =107 xmax(0.0, ((—2.6658 x 10™") x Myyp +(3.3122x1072) ) X ( frov+(—1.2685x1011)))
(B236)

YN =107 x max(0.0, ((1.2205 X 1072) X fuoy + (—3.0464 x 107?) x Myyp + (8.0772 x 107%)))
(B237)
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N =107 x max(0.0, ((8.5541 x 10%%) x Mwp + (—6.9567 x 107?))) (B238)

90 = 107" x max(0.0, ((5.05 x 107%) X fooy 4 (—1.1864 x 10**) x Mywp + (9.751 x 10*?)))
)

(B239

70 = 1075 xmax(0.0, ((3.1153 x 10™1) x Myyp + (—2.2047 X 1071)) X ( faoy +(7.1595 x 1071)))
(B240)

0O = 107" x max(0.0, ((—1.42700) X faoy + (9.8591 x 10%?) x Myyp + (—6.7039 x 107?)))
(B241)

YF = 107° xmax(0.0, ((8.7752x 10™*) x Myyp +(—6.6271 x 10™%)) X (faoy +(8.7528 x 1072)))
(B242)

PNe = 107° x max(0.0, ((—1.72370) X faoy + (4.8452 x 10™") x Myyp + (1.2615 x 1072)))
(B243)

'Ne = 10~° xmax(0.0, ((—1.8884X 10™*) X faoy+(3.8205x 10%) x Mywp+(—2.0585x107?)))
(B244)

2Na = 107° xmax(0.0, ((—4.9237 x 10™%) X fooy + (1.0045 x 10™3) x Myyp + (4.7887 x 1072)))
(B245)

?Ne = 107" x max(0.0, ((1.011 x 10*1) X froy +(—8.5547 x 1071) x Mywp + (7.1204 x 1011)))
(B246)

ZNa = 107" xmax(0.0, ((—2.6158x 107%) x Myp +(4.0585x 1072)) X ( faoy+(1.5067x 1072)))
(B247)

#Mg = 107> xmax(0.0, ((9.0846 x 10%) X fuov +(—1.4289 x 10*") X My +(1.6798 x10™)))
(B248)

Mg = 107" x max(0.0, ((=5.0879 x 10™) x Mywp + (7.297 x 10™1))) (B249)

Al = 107 xmax(0.0, ((—2.6911 x 10™%) X faor +(9.06690) x Myp +(—6.71080))) (B250)
Mg = 107" x max(0.0, ((—9.79150) x Mywnp + (1.2496 x 10*1))) (B251)

TAl = 107° xmax(0.0, ((—1.3868x 107") X fuoy+(2.4911 x 10T") x Myp+(—1.1496 x 1071)))
(B252)
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%81 = 107" x max(0.0, ((—1.34920) X faoy + (8.1937 x 10™) x Myp + (2.4719 x 10)))
(B253)

#Si = 107" xmax (0.0, ((2.6524x1072) x Mywp+(—4.9313x1072)) X (faoy+(—1.1586x 1072)))
(B254)

3981 = 107 xmax(0.0, ((=5.7586x 10™%) x Myyp+(1.7187x1072)) X (faer +(—8.7219x 10™1)))
(B255)

AP =107° x max(0.0, ((—8.3059 x 107%) X fuov + (8.2235 x 1071))) (B256)

8 = 107 x max (0.0, ((—3.8675 x 107") X fuoy + (—1.62480) x Myp + (4.0831 x 10™)))
)

(B257
38 = 1075 xmax (0.0, ((—2.8742x 1072) x Myp+(1.8421 x1072)) X (faor +(—T7.8546x 1011)))
(B258)
718 = 107" x max(0.0, ((=1.8795 X 107%) X faoy + (—9.8219 x 107%) x Myyp + (1.87800)))
(B259)
B0 = 107" xmax(0.0, ((—3.2658 x 107%) X fuoy +(8.5558 x 1072) x Myp +(2.1291 x 1071)))
(B260)
S = 107" x max(0.0, ((—9.02107°) X fuov + (—4.4866 x 10™*) x Myyp + (9.6037 x 107?)))
(B261)
PAr = 107" x max(0.0, ((—7.7522 x 1072) X fooy + (—4.2416 x 107) X Mwp + (7.79590)))
(B262)
3701 = 107° x max(0.0, ((—1.0046 X 107%) X fooy +(1.8348 x 1072) x Myyp + (7.6208 x 107%)))
(B263)
BAr = 107" x max(0.0, ((—1.6591 X 107%) X fuov + (1.6964 x 107%) x Mwp + (1.59170)))
(B264)
FK = 107" x max (0.0, ((—3.4934 X 107?) X fooy + (2.969 x 107?) x Mwp + (3.4329 x 1071)))
(B265)

while for ONeWDs
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"H = 107° x max (0.0, ((=7.0198 X 1072) X fooy + (—2.1871 x 10*) x Myyp +(8.9608 x 1074)))
(B266)
*He = 107" x max(0.0, ((2.8285 x 10™%) X fuoy + (—8.8654 x 107?))) (B267)

He = 107° x max(0.0, ((—2.9356 X 10*%) X froy + (1.7871 x 10*) x Myyp +(1.4567 x 101*)))
(B268)

"Be = 10" xmax(0.0, ((1.1681x10™%) x Mywp+(—1.1033x 10" 2)) X ( faoy+(—2.4826x1011)))
(B269)

"B = 107" xmax(0.0, ((3.4842x107%) x Myyp +(—4.0007x107°)) X ( froy+(—4.7973x 1071)))
)

)

(B270
20 = 107° x max(0.0, ((2.8398 x 1073) x Myp + (—1.2506 x 1073))) (B271
B0 =107" x max(0.0, ((7.20260) X foor + (1.9999 x 107?))) (B272)

YN = 107° xmax (0.0, ((6.6635x 10™") x Myyp +(—3.6999 x 1071)) X ( faoy +(7.1937x 107?)))
(B273)

N = 107° xmax (0.0, ((5.1408 x 1072) x Myyp +(—5.4313 x 1072)) X (faor +(1.4193x10™1)))
(B274)

160 = 107° x max(0.0, ((3.7238 X 102) X fuoy + (—4.8613 x 10™) x Myyp + (4.8786 x 10™)))
(B275)

170 = 107° x max(0.0, ((7.2463 x 10™) X fuer + (—9.5368 x 1012))) (B276)

80 = 1075 x max(0.0, ((—3.6582 x 10™1) x Myp + (5.1806 x 107)) X (faey + (4.61820)))
(B277)
YF = 107" x max(0.0, ((3.1613 X 107%) X fuoy + (6.08890) x Mwp + (—7.44170))) (B278)

2Ne = 107° x max(0.0, ((3.3536 x 101%) X fooy +(—7.9159 x 10*%) x My +(9.8141 x 107?)))
(B279)
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2INe = 107" x max (0.0, ((2.5073 x 10™1) x Myp + (—=2.2038 x 107)) X (faoy + (—7.27060)))
(B280)
#2Na = 107 x max(0.0, ((3.16800) x Myp + (—3.36720)) X (fuor + (—4.18600))) (B281)

ZNe = 10~°xmax(0.0, ((—1.4955x 10T ) x Myyp+(2.0984x 107)) X ( faoy+(—1.1821x1071)))
(B282)
»Na = 107" xmax (0.0, ((3.8757x10™") x Myp+(—3.8618x10™1)) X (fuoy+(—1.6515x1071)))
(B283)
Mg = 107" x max(0.0, ((3.4114 x 10™1) x Myp + (2.61060)) X (fuor + (—3.6483 x 1011)))
(B284)
»Mg = 107" xmax(0.0, ((1.4668 X 10T") X fuoy+(—1.4336 x 107%) x Myyp +(1.4242 x 10™2)))
(B285)
AL = 107" x max (0.0, ((4.00780) X fuov + (—5.1138 x 107%) x Myp + (5.2138 x 107?)))
(B286)

Mg = 107" xmax(0.0, ((2.02750) X froy+(—8.682x 10"") x Mywn+(5.597x1071))) (B287)

TAL = 107° x max (0.0, ((1.7186 X 1071) X fuoy + (—2.8691 x 107%) x Myyp +(3.0188 x 107?)))

(B288)

%G = 107" x max(0.0, ((7.3982 x 10™") X fuor + (8.9046 x 1072))) (B289)

281 = 10" xmax (0.0, ((1.3145x10™) x Myp+(—1.3624x107) ) X (faoy+(—1.1926 x101)))
(B290)

0Si = 107 xmax(0.0, ((1.0588 x 1072) x Myyp+(—1.1518x10"%)) X (foov+(—1.6289x 1071)))
(B291)

P = 107" x max(0.0, ((1.2395 x 10™) X fuoy + (—3.5799 x 1072))) (B292)

329 = 107° x max(0.0, ((6.761 x 10™) x Myyp + (—7.4808 X 10™)) X ( fuoy + (3.8548 x 101)))

(B293)
S = 107" x max(0.0, ((3.38080) X fuoy + (1.3794 x 1071))) (B294)
S = 107" x max(0.0, ((1.2892 x 10™®) x Myp + (—1.429 x 107?))) (B295)
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BCL= 107 x max(0.0, ((—3.6338 x 107') X fooy + (1.3213 x 1072))) (B296)
8 = 107" x max(0.0, ((—1.2405 x 1072) x Myp + (1.7831 x 1072))) (B297)

FAr = 107° x max(0.0, ((1.5232 x 1071) x Mywp +(—=1.68 X 1071)) X ( faoy +(4.0688 x 107%)))

(B298)
37C1 = 107° x max (0.0, ((=4.965 x 1072) X foor + (6.82040))) (B299)
BAr =107 x max(0.0, ((—2.334 x 107%) X fuov + (2.56750))) (B300)

FK = 107" xmax(0.0, ((—5.8502x 1072) X fuor+(9.7249x 10 ) x Myp+(—6.0058 x 1071))) .
(B301)
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C HBB Calibration

Previous authors (e.g. Groenewegen & de Jong, 1993) have used constant values for fuypg,
Journs foup and foup pum, with a different prescription for the temperature (not requiring

Niise). Here these values are fitted to Mrp and Z.

C1 Calibration method

A Monte-Carlo (MC) method is used to test the above free parameters with ranges 0.0 <
fuss < 1.0, 0.0 < 10° fyym < 10.0 and 0 < Nryise < 20. The parameters foup and fouepum

are chosen to be zero and are only increased when necessary.

A weighted sum of squares is constructed from the Monash model nucleosynthesis data
vs the corresponding synthetic nucleosynthesis data to enable comparison between MC
model runs. A score = (3, wis;) ! is defined such that higher numbers mean a better fit
where the weights are w; = (wci2, weis, Wxia, Wois, We/0, Weizycis) = (1,10,1,1,5,5) and
si is the sum of squares difference between the Monash model and synthetic model for the
isotope (or ratio) ¢. The ratios Xci12/Xc13 and X¢/Xo are weighted preferentially because
these are important observed nucleosynthetic constraints on AGB stars. 3C is also boosted
because its abundance is small. 1D slices and 2D projections of the resulting parameter
space are then examined and compared with the best fit obtained by this method. Human

intervention comes last but proves invaluable when trying to fit the details.
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C2 MlzBMQ

The Monash models for M; = 5 Mg show strong hot-bottom burning at all metallicities.
This is modelled with a high value for both fi,,;, and fggg. When CNO reaches equilibrium
there is degeneracy between fy.m and frypp because it is possible to increase the amount of
envelope burned at the expense of the burning time and obtain roughly the same amount of
hot-bottom burning. This can be quantified in the following way: define the mass exposed

to hot-bottom burning in an interpulse period as

1 [m
Mexp = A]\4burndt> (Cl)

Tip Jo

where AMy,,m, is the amount of matter burned in time dt. This can be approximated as

1
Mesp = —AMpym At (C2)

p

where At is the burning time. In the synthetic model fypp is used to parameterize the

burning such that AMyym = Meny fups and At = 7ip foum giving

Mexp - enfoBbeurn > (CS)

from which it can be seen that increasing fygg while decreasing fi,,,, will give the same

Mexp-

An approximate value for M, can be calculated from the Monash models. Let At =
Te(AMugg/Meny ), where 7. is the convective turnover time, and AMyym = AMygp which
correspond to the true values expected for At and AMym. AMpgg is about 107* Mg, (see
section 2.7), while 7. can be found from the Monash models and is of the order of 1 year

for M; = 5My, Z = 0.02. Substituting into eq. (C2) gives
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fHBB
T 1T 1 1 T 1 1T 17T

o

1 2 3 4 5 6 7 8 9
fourn X 10°

=
o

Figure C1: Monte Carlo score (light is best, dark is worst) for varying fypp and foum when
M; = 6Mg, Z = 0.02. The relation fapp ~ (10°fyum) ! can be seen to be
approximately true.

1 AM

Mexp/M® ~ ;#TCAMHBB (C4)
ip env
1 10 4 s

A comparison with eq. (C3) with Me,, &~ 5 Mg gives

fHBbeurn ~ 10_6 . (C6)

This is not accurate enough to use as a constraint, because the values for 7, 7., AMyupg,
Moy etc. change from pulse to pulse and star to star, but does explain the results of the
MC runs. The expected fapp ~ (10°fyum) ™' behaviour can be seen in the plot of fypp vs
fourn 10 figure C1.

The values of f,.m and fypp are extracted from the one dimensional plots of MC score
VS fpurn and fupp. An additional term is included in the score to match the shape of
the abundance curve for **C. This is a useful constraint because this shape (figure C4) is
very dependent on the burn time fi,m. If foum is too high the smooth bell-shape across

the interpulse period is lost while, if it is too low, not enough '3C is converted to N
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Figure C2: MC score vs the fraction of the interpulse period for which hot-bottom burning

is active, fpum, for 20 bins in the range 0 < 10°fyum < 10 (left panel) and 0
bins in the range 0 < 10° fi,,;n < 2 (right panel) when M; = 6.0 M, Z = 0.02.
Error bars are Poisson (statistical) errors.

during each interpulse period. Figure C2 shows the MC score distribution of fyum for

Mi = 6M®, Z = 0.02. The peak is at 106fburn ~ 0.8. For Mi = 5M®, Z = 002, fHBB

and 10° f, .. drop to about 0.3 because there is less hot-bottom burning. This drop-off

occurs somewhere between M; = 4 Mg and M; = 5 Mg for Z = 0.008 and at M; = 4 Mg

for Z = 0.004 reflecting the fact that the lower metallicity stars are more compact so the

convective turnover time is smaller, more mixing occurs and the temperature and density

are higher at the base of the convective envelope.

The temperature-rise factor Ny is of order 1-2 for these strongly hot-bottom burning

stars. The effect of this factor is seen mainly in 3C with a spike in the surface abundance

as shown in figure C4. An initial rise in 12C is not visible at M; = 6 M, but is by M; = 5 M,

indicative of HBB beginning only after a few pulses. No dredged-up material is immediately

burned (foup =0, fourpum = 0).
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Figure C3: MC score vs the fraction of the envelope which undergoes hot-bottom burning,
fuss, for M; = 6.0 Mg, Z = 0.02. While this shows that fggg = 0.4, the true
value is not well constrained. Error bars are Poisson (statistical) errors.

10g10(Xc13)

-4.2

0 0.5 1 15 2 25
Time/ 10° yrs

Figure C4: Variation of the surface 3C abundance with time from the first pulse for the
TPAGB phase of a M; = 6 Mg, Z = 0.02 star. The position of the *C spike at
about 20, 000 years is controlled mainly by the N, parameter. The full stellar
evolution model is shown by the solid line, the synthetic model by the dashed
line.
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Figure C5: Synthetic model output showing the surface 2C, *C and *N abundance for
M; = 4Mg, Z = 0.004 (dot-dashes), 0.012 (dashes) and 0.02 (solid line). For
Z = 0.004 there is HBB after a delay of about 15 pulses but for higher metal-

licity there is no HBB at all.
C3 M~ 4M,

Stars around M; = 4 Mg, are in a transition zone where hot-bottom burning is not very
effective but does occur at low metallicity. There is no immediate drop in 2C and associated
peak in 3C at the onset of pulses, rather if HBB occurs at all it occurs after many pulses
(see figure C5). Large amounts of CNO-processed products can still be produced.

For M; = 4Mg fuss ~ 0.1 and 10°f,,m ~ 0.1 but the MC technique cannot isolate
regions of parameter space for stars in which little or no HBB occurs (Z > 0.008). A
large value of Nys > 3 — 6 simulates the late start of HBB. No dredged-up material is

immediately burned (fpup = 0.0, fpuppum = 0.0).

Y

No HBB occurs in stars with M; < 3.5Mg with the exception of Z = 0.0001. Thus

for M; < 3.5Mg, foun = fus = 0 and Ny = 0. In the low-mass and low-Z stars
there is production of ¥*C and N at each pulse. This indicates CNO burning during

dredge-up or incomplete mixing during the He-shell flash. To simulate this, for Z < 0.004,
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C4 M; < 3.5Mg
foupburn = 3 X 107% and

3.7

foup = 1077 max(l — 2507, 0)(1 + 1+ 0.127-21M;

) (C7)

to give a value about 3.5 times larger for M; > 1.5 M, than for M; < 1.5 M.
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C HBB Calibration

Table C1:

Table C2:

Z | Myrp/Mg — | 3.5 4.0 5.0 6.0 6.5
0.02 - - 0.1-0.5 | 0.5-0.6 | 0.4-1.0
0.3 0.55 0.7
0.008 0 <0.2 ] 0.6-1.0 | 0.8-1.0
0 0.1 0.8 0.9
0.004 0 |0.15-0.5 | 0.5-1.0 | 0.8-10
0 0.3 0.75 0.9

Burning time 10° fy,,.n as a fraction of the interpulse period for different masses
and metallicities. The top numbers (black) are the ranges narrowed down by
the MC runs. The numbers below (red) are used to fit a relation to M;tp and

Z. fburn = 0 for MlTp < 3.5 M@.

Z | Myrp/Mg — | 3.5 4.0 5.0 6.0 6.5
0.02 - - 0.1-0.4 0.65 0.3-1.0
0.25 0.65 0.7
0.008 0 0.1-0.2 | 0.4-1.0 | 0.7-1.0
0 0.15 0.7 0.85
0.004 <0.1]0.1-0.5 | 0.8-1.0 | 0.75-1.0
0.1 0.3 0.9 0.85

Envelope mass fraction exposed to HBB, fygg for different masses and metallic-
ities. The top numbers (black) are the ranges narrowed down by the MC runs.

The numbers below (red) are used to fit a relation to Mirp and Z. fugg = 0
for Mitp < 3.5 MQ.

C5 Free Parameter Heaven or Hell

The results of the Monte-Carlo runs for each star are shown in tables C1, C2 and C3.

Ranges are given when the MC technique cannot distinguish a unique solution. In such

cases a value is chosen that aids the fit of the free parameter to Mtp and Z or such that

10° fyurn =~ funs. The chosen value is shown under the range. If the value is “-” then there

is no HBB so fpup = foumm = 0.0. Where no value is given there is no Monash model with

which to compare. It is not possible to use the best MC values for every star because there

is too much non-systematic scatter.

The values for fypg and fium are zero for Mirp < 3.5 Mg with a step up to about 0.9 at

Mirp = 4.5My and a slight metallicity dependence. These can be reasonably well fitted
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C5 Free Parameter Heaven or Hell

Z | Myrp/Mg — | 35|40 | 50 | 6.0 |65
0.02 - - ~3 | <1]1-2
3 05|15
0.008 >6 | ~6|~25]|~2
6 6 2.5 2
0.004 ~6|~3] <2 | <1
6 3 2 1

Table C3: Temperature rise factor Ne for different masses and metallicities. The top
numbers (black) are the ranges narrowed down by the MC runs. The numbers
below (red) are used to fit a relation to Mjrp and Z. N is undefined for
Myrp < 3.5Mg (because foum = fups = 0).

to a function fog similar to a Fermi function

(aCSZ -+ bcg)
1+ (CCSZ + dCS)(608Z+QC8*M1Tp/M@) ’

fes

(C8)

Coefficients are given in table C4. The fcg parameter for fypg or 10° fyum is then given by

max(fcs, 0.0). N is fitted to a quadratic in M;rp and z = min(Z,0.02)

Nise =max (aco(Mirp/ M@)2 + boo(MiTp /M) +

ccoz + deo2® + ey, 0) . (C9)

Coefficients are given in table C5. The maximum value for Z is necessary to maintain
the behaviour of the function at higher metallicity. Equation (C9) reaches a minimum
value at around M;rp = 6 M, and is assumed to be valid for masses higher than this. For

Z < 0.004 some immediate burning of dredge-up material is included.
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C HBB Calibration

312

Eq- (08) for fburn Eq-

(08) for fHBB

~ O Q0 o9

4.4174
0.83381
—6967.1

143.62

96.155

3.7466

—0.10852
0.93068
—1072.4

40.997
65.438
3.9181

Table C4

Table C5: Coefficients for Ny fitting function.

: Coefficients for fyum and fygg Fermi functions.

Eq. (C9)
aco 0.51
beg —6.6
cco 169
dcy 5300
€C9 21




C6 Sensitivity to fusg, fourn and Nyse

C6 Sensitivity to fuBB, fourn and Nijse

With the model described above and an appropriate choice of fugg, fourn and Ny it is
possible to match the Monash models to the synthetic models quite accurately. Problems
occur with the fitted values of fypp, fourn and N because minor deviations in the fit of
the free parameters produce very different output. The sensitivity does not help us pin
down unique values for fy,.m and fggp owing to their inherent degeneracy. For example if
Niise is too small then C rises and falls too early in the M; = 6 M, stars. If fi.m is even
slightly too small the ON cycle does not get switched on'. If fi,., is slightly too large then
more N is produced at the expense of 12C and 3C. A slight rise in fypp causes a large
rise in HBB products, especially "*N. The sensitivity to fuygs and fyum is compounded

when both are erroneous in the same direction.

A change to fypp affects the 2C surface abundance evolution for M; = 5Mg, Z = 0.02
(see figure C6). An increased frpgp better fits the drop in 2C which occurs when HBB
sets in but by the end of the evolution the surface abundances are not very different. At
most X9 is wrong by a factor of 1.4 at any point over the entire evolution, while overall
it changes by a factor of 5. Final 1*C and N have a similar scatter in log;, X of about
0.15. These effects are hardly visible in the case of the M; = 6 M, Z = 0.02 star and,

because no burning occurs at all at M; /Mg = 4.

Alteration of the burning time, f,,m, has essentially the same effect as a similar change
in fugs. The exception is oxygen which is burned in the ON cycle when fyym is long
enough. The amount of O burned for M; = 6 My, Z = 0.02 is small in the Monash
models (Alog,y Xo1g = —0.04). This is about twice the size of the spread with A f,,., =
+0.13 so is not significant. Significant oxygen burning occurs for M; = 6 My, Z = 0.004
but the standard synthetic model deals quite well with this (see figure C7). The carbon

and nitrogen abundances are weakly affected at M; = 6 My but at the transition mass

!This is not a huge problem (except for M; > 6 My) because most stars do not change their surface
oxygen abundance significantly over their lifetime. For M; > 6 Mg and low Z this could be a source of
WOLTY.
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-2.1

10910(Xc12)

Time/ 10° yrs

Figure C6: '2C abundance vs time for M; = 5 Mg, Z = 0.02 with varying fugs = fits +
Af, with —0.13 < Af < 0.13. The fitted value of fygg is slightly wrong, but
this only gives a maximum error of 0.15. The solid line is the Monash model,
the other three lines are Af = —0.13, 0 and 40.13 with symbols +, x and [J
respectively.

(M; = 5Mg, for Z = 0.02, M; = 4 M, for Z = 0.004) the surface abundance is sensitive to
fourn-

In summary, stars in the zone of transition between non-HBB and HBB (M; = 4 M, for
Z =0.004, M; = 5Mg, for Z = 0.02) are the most troublesome when it comes to errors in
the fit to fupp and fuum. However this transition is quite sharp, so not too many stars in

a population would have the wrong surface abundances.

C6.1 Temperature sensitivity

If the fit to the temperature of the HBB layer is allowed to vary even by a tiny amount, while
the other free parameters are kept constant, CNO element production varies significantly.
To show this log;; Tiax is allowed to vary from the fitted value by a factor 0.98 < fr < 1.02,
just 2 per cent variations (5% in Tpax), and the abundance vs time profiles are compared
for the case M; = 6 My, Z = 0.02 which would ordinarily undergo large amounts of HBB
(see figure C8). It should not be expected that fr = 1.00 is the best fit because in reality
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Figure C7: 10 abundance vs time for the M; = 6 My, Z = 0.004 models, fyum set to
fit +Af, where —0.13 < Af < 0.13. The standard synthetic model (Af = 0)

burn
does a reasonable job of reproducing the Monash model. The solid line is the

Monash model, the others from top to bottom are Af = —0.13,0 and +0.13
with symbols +, x and [ respectively.

the HBB layer has a temperature profile while in the synthetic model it does not. Note
that the log,y Tmax limit of 7.95 is disabled for these tests leading to numerical problems
at fr = 1.02.

e The final 2C is not greatly affected by temperature changes but fr = 0.98 effectively
switches off HBB. Paradoxically fr = 1.02 burns less 2C than fr = 1.01 during
most of the evolution. This is because fr = 1.02 puts the temperature above the

log,o(T/K) = 7.95 limit of applicability of the burning code. The best fit is for
fr = 1.0.

e 13C is affected in a more subtle way. At low temperature more *C is produced by
incomplete CNO cycling. At the higher temperatures this **C is converted to N.
The final abundances for fr > 1.0 are all similar because CN equilibrium is achieved,
while for fr < 1.00 there has not been enough conversion of *C to “N. Again

fr =1.00 is the best fit.
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Figure C8: 12C, BC, YN and %0 surface abundances vs time for M; = 6 My, Z = 0.02
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with varying temperature factor 0.98 < fp < 1.02. The solid line is the corre-
sponding Monash model. The dashed lines represent fr = 0.98 to 1.02 in 0.01
increments, from top to bottom (+, x, [J, B and o respectively). See text for
details.



C6 Sensitivity to fusg, fourn and Nyse

e The log of the final surface abundance of nitrogen varies from —2.55 at fr = 0.98
(the same as the abundance at the start of the TPAGB) to —1.85 at fr = 1.02. The
best fit is fr = 1.01 although fr = 1.00 is not too bad. For fr > 1.01 nitrogen

abundances are high owing to excessive ON cycling.

e Of the CNO elements, surface oxygen abundance varies the most with temperature.
For fr < 1.00 there is little change in oxygen abundance, just as in the Monash
models. An increase in the value of fr to just 1.02 causes the surface oxygen abun-
dance to drop by a factor of 10. This is not seen in the Monash models so a value of

fr = 1.00 is certainly justified while fr = 1.01 also gives too large a drop.
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D Mass-Loss Prescriptions

The following mass-loss prescriptions are included here for completeness. No justification
to the terms is given, for such details see Hurley et al. (2002), Dray et al. (2003) and/or

references included below.

D1 HO2

GB and post-GB stars The formula of Kudritzki & Reimers (1978) is used

(L/Lo)(B/Ro)

Mg =n4x 107" Mg yr—? D1
with n = 0.5.
AGB stars The Vassiliadis & Wood (1993) rate
log Myw = —11.4 4+ 0.0125 [Py — 100 max (M /Mg, — 2.5,0.0)] (D2)

is applied where F, is the Mira period pulsation given by
log(Py/d) = min [3.3, —2.07 — 0.91og(M /M) + 1.94log(R/Rs)] - (D3)

A cap (the min[3.3,...] term) is applied at Myw = 1.36 x 107°(L/Lg) Mg yr~" to

model the superwind phase.
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D Mass-Loss Prescriptions

Massive Stars The rates of Nieuwenhuijzen & de Jager (1990) are applied over the entire

HR diagram by
. A 0.5
Myy = (Z—Q) 9.6 x 10" °(R/Ra)** (L/Lo) " (M/Mg)** Mg yr™,  (D4)

for L > 4000 L, modified by the factor Z%° .

Small envelopes For 1 < 1.0 (see eq. B46 for the definition of 1) a Wolf-Rayet-like mass

loss is included in the form

Myg = 1078 LY(1.0 — p) Mg yr L. (D5)

The total mass-loss rate is the dominant rate from the above choices
M = maX(MR, Mvw, MNJ, MWR) . (D6)

A Luminous-Blue-Variable-like mass loss is added for stars beyond the Humphreys-Davidson

limit (Humphreys & Davidson, 1994),

Mgy = 0.1(107°(R/Re ) (L/Le)*° — 1.0)3 x ( — 1.0) Mg yr* (D7)

6 x 10
which is added to M if L > 6 x 10° Ly, and 107%(R/Rg)(L/Ly)%® > 1.0.

For naked helium stars the WR mass-loss rate is used with y = 0 to give

M = max (MR, Myr (= 0)) : (D8)

D2 MM

The MM rates are similar to the enhanced mass-loss rates of Maeder & Meynet (1994).
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D3 NL

Pre-WR evolution The empirical mass-loss rate of de Jager, Nieuwenhuijzen & van der

Hucht (1988) is used, but note the extra factor of 2,

log(—M /Moy ) = 3 i 0T, <1og(Tegé§; — 4.05) T (log(L/IQJi) - 4.6) |

n=0 1=0, j=n—1

(D9)
where
Tj(x) = 2cos(j arccos x) (D10)
and a;; are tabulated in de Jager et al. (1988).
WNL phase A constant rate of 8 x 10 M, yr~! is used (Conti et al., 1988).
WNE, WC and WO phases The theoretical mass-loss rate of Langer (1989),
' Y 2.5
Mg = (0.6 — 1.0) x 1077 ( WR) Mg yr?, (D11)
Mg
is used.
D3 NL

Pre-WR evolution As with the MM mass-loss rate above the de Jager et al. (1988) rates
are used, although without the factor of 2 in eq. (D10).

WNL and WNE phases The mass-loss rate of Nugis & Lamers (2000) is used:
log(Myx /Mg yr ) = —13.6 4+ 1.63log(L/Le) + 2.22log Y’ (D12)

where Y is the surface helium abundance (by mass fraction).

WC phase The Nugis & Lamers (2000) mass-loss rate

log(Mwe /Mo yr—') = —8.3 + 0.841log(L/Ls) + 2.04logY + 1.04log Z  (D13)
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D Mass-Loss Prescriptions

is used.

WO phase A constant rate of 1.9 x 1075 is used.
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D4 KTG93 Initial Mass Function
D4 KTG93 Initial Mass Function

According to Kroupa et al. (1993) the probability of finding a star with initial mass m <
M; < m+ dm is given by £(M;)dm where

(
0 m < mg

aym 3 my <m <0.5
§(m) = : (D14)
aom™2% 05 <m<1.0

\ aom™27 1.0 <m < oo

With my = 0.1 Mg, and the normalization condition

/000 E(m)dm =1, (D15)

gives a; = 0.29055 and ay = 0.1557.
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E Prescription for \cg

The latest version of BSE, released after the Hurley et al. (2002) paper, contains a pre-
scription for the free parameter Acg calculated by Onno Pols. He used a method similar to
that of Dewi & Tauris (2000) to calculate A\cg by fitting to detailed Eggleton-code models.

The following is taken directly from the code — it has not yet been published.

For helium stars a value of Acg = 0.5 is assumed (no fit is yet available). For MS, HG

or GB stars

while for CHeB or EAGB
then
A1 = min L—OIMO L,0.80 (E3)
e 24+ Lz B10 L, - '
my
TPAGB stars have
A1 = —3.5—-0.751og,y M + log,, L. (E4)

For CHeB, EAGB or TPAGB stars then define

325



E Prescription for \cg

while for all other stellar types

>

o
I

(e}

Then

2\ MS, GB,
A= 2min(Aq, Ag) CHeB, EAGB,
2min [1.0, max(Aq, A2)] TPAGB.

A fraction of the ionization energy fi,,, the BSE default is fi,, = 0.5, can then be

introduced into the envelope. Define

min (1.2(logy M — 0.25)% — 0.7, —0.5) MS, GB, o
a =
max (—0.2 — log,, M, 0.5) CHeB, EAGB, TPAGB,
b = max(3 — 5log;, M, 1.5), (ET)
¢ =max(3.7+ 1.6 log,, M, 3.3 + 2.11og,g M), (E8)

redefine A\, such that

Ay = a + arctan [b(c — log,q L)], (E9)

d = max (0, min [0.15,0.15 — 0.25log,, M]) , (E10)

fudge Ay for pre-helium-burning stars
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Ao +d x (logyy L — 2) MS, HG, GB,
Ay CHeB, EAGB, TPAGB

A

then

Ao = max (1/ max(A2,0.01), Ay) .

Now let,

AL = A1+ fion(A2 — A1)

If the envelope mass is < 1My then override the above definitions to give

R 0.4
Ao = 0.84 (%) .

Then calculate Acp

)\2 Menv — 0 M@ 5
)\CE - )\2 + M(?n?r()\l — )\2) 0 S Menv/M® S 1,
A1 Moy > 1 Mg .

(E11)

(E12)

(E13)

(E14)

Typically A\cg ~ 1.0 — 2.0 for GB or AGB stars, is 0.25 — 0.75 for HG stars and is 0.5

for helium stars.
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F How Fast is binary_c/nucsyn?

Table F1 gives the reader some idea of the runtime of binary_c/nucsyn on a 1.4 GHz
AMD Athlon PC running Linuz 2.4.20. One thousand stars were evolved at Z = 0.02 over
the low- and intermediate-mass range and the entire mass range. The intermediate-mass
stars are the slowest to evolve because they experience more thermal pulses.

For comparison, a 7My, Z = 0.02 model takes 36 minutes to evolve from pre-MS to
TPAGB using 199 mesh points with the full Eggleton code (Stancliffe, private communi-
cation). To evolve properly on the TPAGB takes about an hour per pulse with 999 mesh
points (Stancliffe, private communication). This is just the evolution code with the same
nucleosynthesis as the Dray models, not the full nucleosynthesis of the K02 models which
can take days or weeks to calculate (Karakas, private communication). These figures are
for a 550 MHz Sun-Blade-100, scaled to an equivalent 1400 GHz CPU. Note that Athlons
give better performance per GHz and per unit currency. The speed-up factor the synthetic

code provides can be conservatively estimated as

2 weeks
0.1s

~1.2x10".

Not bad!

‘ Mass Range ‘ Single Stars ‘ Binary Stars ‘

0.1 <M, <8 0.081 0.143
0.1 < M;, <100 0.046 0.076

Table F1: binary_c/nucsyn runtimes (in seconds). See text for details.
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