Stars and Stellar Evolution (WS11-12) Computer Practicum with WTTS

Exercise 8 (27/01/12)

NOTE: This exercise is a recap of the virial theorem and its importance in stellar evolution. Just to remind it to you the virial theorem states that

$$U + 2T = 0,$$

where T is the kinetic energy of the system and U is the potential energy. In a star, the kinetic energy T is related to the internal energy $E_{\rm int}$ through the adiabatic index γ and gravity is the source of potential energy $U = E_{\rm grav}$, so

$$3(\gamma - 1)E_{\rm int} + E_{\rm grav} = 0,$$

where the adiabatic index $\gamma = 5/3$ for an ideal gas. We want to investigate stellar models to test the virial theorem and the validity of the ideal gas approximation during various stages in the life of a normal star (like our Sun) or more massive stars (e.g. the models used in the previous exercise).

- 15. Find your solar mass model(1M) in your SSE_WTTS# directory to carry out the following tasks:
 - 1. Use the **HRD** to select an appropriate model for the **main sequence**.
 - 2. Using the Internals tab, save the model as 1Msun_MS.mdl(just by right clicking on the model number you have chosen) files in your SSE WTTS# directory.
 - Find the perl script "virial_theorem.pl" in your SSE_WTTS# directory. You
 have to edit the script to make it work with your *.mdl input files.
 - a) Using your favourite text editor, e.g. *emacs* or *gedit*, change the filename in the perlscript i.e. find the line \$input_file=''*.mdl'';
 - b) Write expressions (in Perl!) to calculate the internal and gravitational energies by using the correct expression for E_{grav} and E_{int} i.e. $E_{\text{grav}} = \dots$; and $E_{\text{int}} + \dots$;
 - 4. Comment on your results obtained for $E_{\text{grav}}/E_{\text{int}}$ (from the model) with regards to validity of the ideal gas approximation.
 - 5. How does the α factor to compare with the result you obtained in the exercise 2.3(a)? [e.g. $\alpha = 1.5$ for the main-sequence (ref. Maeder)]
- 16. Using the same prescription, select a main sequence model for a high mass star (e.g. from last class) to find value of γ and the appropriate equation of state.

17. The total energy of the star is $E_{\rm tot} = E_{\rm int} + E_{\rm grav}$. Derive an expression for $E_{\rm tot}$ as a function of γ and either $E_{\rm int}$ or $E_{\rm grav}$. From this, deduce what happens if the star has $\gamma < 4/3$.