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This document is a modified version of the stellar evolution lab course provided

at the university of Bonn designed for the IMPRS summer school Frontiers

of Stellar Structure and Evolution in Heidelberg, Germany, September 22-26,

2014. While every effort has been made to remove references to the Bonn

course, some may still remain. Sorry!

Section 1 introduces the Window to the Stars software, sections 2 and

3 describe the physics package and section 4 has some exercises for you to

try. You are not expected to get to the end of the exercises in the allotted

time, more important is that you try! Alternatively, you could be brave and just

attempt to make your own models without reading the manual. . . remember,

we’re here to help, so please just ask if you have a question.
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1 Introduction

The standard computational tool of anyone interested in understanding stars is a stellar

evolution code — a piece of software that can construct a model for the interior of a star, and

then evolve it over time. Evolution codes allow us to check and refine the various physical

theories that together compose stellar astrophysics (e.g., atomic physics, nuclear physics,

fluid dynamics, thermodynamics); they provide laboratories for performing experiments on

stars (e.g. discovering what factors contribute to the formation of red giants); and, they shed

light on stages of stellar evolution that may be too fleeting to observe directly in the Universe.

Stellar evolution codes trace their ancestry back half a century, to a seminal paper by

Henyey, Forbes & Gould (1964). With the advent of electronic computers, these authors

devised a way to solve the partial differential equations governing stellar structure and evo-

lution. In these equations, spatial gradients are replaced by finite-difference approximations

represented on a discrete grid of points, extending from the center of the model to the sur-

face. This leads to a large set of simultaneous equations for the state variables (pressure,

density, etc.) at each grid point, which can be solved using matrix methods.

Many evolution codes have been written based on the Henyey method, and various im-

provements to the method have been introduced over time. Among the most well-known

historical codes are those by Eggleton, Kippenhahn and Paczynski — quite a few modern

codes are essentially heavily modified versions of these. The Eggleton (1971) code was

particularly innovative, in that it introduced an algorithm for automatic redistribution of grid

points. This allows stars to be evolved up the red giant branch with only a few hundred points

in total, which makes the code very fast.

One descendant of the original Eggleton code is the TWIN code, which allows simulation

of binary evolution as well as single-star evolution. While the physics in TWIN is quite up

to date, it is very user-unfriendly. To address this issue, Robert Izzard and Evert Glebbeek

have developed Window To The Stars (WTTS), a graphical interface to TWIN, which will be

used for this course. All relevant information regarding this course and the WTTS software

is available for free online at: http://www.astro.uni-bonn.de/∼izzard/stellar_computing.html
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2 Background

Stellar evolution is based upon the solution of the equations of stellar structure, together with

equations governing the mixing and nuclear burning of chemical elements. For a spherically

symmetric star that is not rotating, these equations are:

• the equation of hydrostatic equilibrium:

dP

dm
= −

Gm

4πr4
, (1)

where P, r and m are pressure, radius and the mass contained within a spherical shell

of radius r, respectively,

• the equation of mass conservation:

dr

dm
=

1

4πr2ρ
, (2)

where ρ is the density: dm = 4πr2ρdr,

• the equation of energy generation:

dL

dm
= ǫ, (3)

where L is luminosity and ǫ is the energy generation rate including nuclear energy gen-

eration, energy from gravitational sources and energy losses from neutrino emission,

and

• the equation of energy transport, which may be expressed as:

d ln T

dm
= −∇

d ln P

dm
(4)

where the form of ∇ depends on whether the region of the star is radiative or convective

(refer Chapter 4 from the lecture notes).

Equations 1-4 determine the (static) structure of the star and hence are referred to as the

“structure equations”. In order to model the star’s evolution we also need to track the com-

position of the star which is altered by nuclear reactions and also by material being mixed

throughout the star by convection. If mixing is assumed to be modeled as a diffusive pro-

cess, the change in mass fraction Xi of the element i is governed by the equation (same as

Eq. 6.5 in the lecture notes):

d

dm
(σ

dXi

dm
) =

dXi

dt
+ Ri − Si (5)

where σ is the diffusion coefficient, Ri is the rate at which the species i is being burnt by

nuclear reactions and Si is the rate at which it is being produced by nuclear reactions.

The remaining physical inputs include the equation of state for the material, data covering

reaction rates, neutrino losses and opacity of the material.

Now, in order to understand the method for (simultaneously) solving the above equations,

it is essential to be familiar with the following terminology:

• A time-step is defined as the act of moving from a model at time t to one at time t+△t.
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• To produce a model at a new time-step using the relaxation method (Heyney method:

refer Kippenhahn & Weigert Chapter 11), it is necessary to make iterations on the

solution.

• When the changes to the current solution are sufficiently small the model is said to

have converged.

The “fully-simultaneous” method involves solving all the equations (1-5) together at each

individual iteration of each time-step, thus giving the internal structure i.e. ρ(m, t), P(m, t),

T(m, t), r(m, t), Xi(m, t) at every time-step. Given an initial model e.g. ρ(m, t), it is possible

then to compute the next model (given a fixed timestep △t) i.e. calculate ρ(m, t+△t). This

is essentially the task for any stellar evolutionary code, as will be illustrated with the following

exercises using WTTS.
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3 Stellar model sequences

Stars are modelled as one-dimensional spheres. Even in a star rotating so fast it is about

to break apart, this approximation is not too bad (to within 50% in the radius). The star is

divided into many shells labelled by their mass co-ordinate m (where 0 6 m 6 M, where M

is the total mass of the star).

• A stellar model is a description of the state of a star (pressure, density, temperature,

radius etc.) for one time only, usually labelled t.

• A stellar model sequence is for many different consecutive times, t, t+ ∆t, . . .

WTTS uses a starting model – usually of a “zero-age main sequence” (ZAMS) star which

has just started to burn hydrogen – to construct a model sequence at later times. Given

that at time t we have a model of ρ(m, t), P(m, t), T(m, t), r(m, t), l(m, t), Xi(m, t) etc.

inside the star, we want to calculate ρ(m, t + ∆t), P(m, t + ∆t), T(m, t + ∆t), r(m, t + ∆t),

l(m, t + ∆t), Xi(m, t + ∆t). At each shell we have a stellar structure equation, so if there

are N shells, there are (at least!) 4N + Nisotopes equations (one for each species) to be

solved. Given that N & 200 for a realistic and accurate stellar model, this implies at least

2000 coupled equations must be solved at each timestep. Note that there are 5 equations

mentioned above but 6 variables: the final equation to be solved is the equation of state

which gives P(ρ, T), or equivalently T(ρ, P) or ρ(P, T). At the surface and the core, boundary

conditions replace the normal equations: there are two boundary conditions at the core, and

two at the surface, which replace the four stellar structure equations.

Model Relaxation

The relaxation method is not about going to sleep! Read all about such methods at

https://en.wikipedia.org/wiki/Relaxation_method.

The method employed by the TWIN code is the Henyey scheme (see Kippenhahn &

Weigert Chapter 11 or the talk at http://www.astro.uni-bonn.de/∼izzard/technical.html). The

equations are discretized (see https://en.wikipedia.org/wiki/Discretization) and relaxed (or

solved) to a stated accuracy, at which point they are said to be converged. The process is

repeated and the stellar model sequence stops either when a maximum time is reached (or

some other stop condition is true), or when convergence is impossible.
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4 Exercises

Perform the following steps (in the order as below) in order to carry out the exercises (1-7):

1. Log in. You will need to work from a terminal , so open one.

2. Create a parent directory in your home directory to run and save your models/results

using WTTS. This could be SSE_WTTS for instance, in which case you would run:

mkdir SSE_WTTS

Always work from within this parent directory.

3. Each task you perform should be from within a subdirectory of SSE_WTTS with a
unique name, e.g. if you want to evolve a 1 M⊙ star, and call the directory 1msun, run

the following:

cd SSE_WTTS

mkdir 1msun

Launch WTTS from within the appropriate subdirectory:

cd 1msun

/vol/software/software/astro/wtts/wtts

4. To evolve a new (mass) model sequence, start WTTS (following Step 3). Set appropri-

ate inputs (as required for the task/exercise) before you hit Evolve. Note that when

you hit Evolve, any model sequence in the current working directory will be erased and

the overwritten!

5. To reload (NOT TO EVOLVE) an existing model sequence (e.g. from a previous class)

simply launch WTTS (Step 3) from the appropriate subdirectory and use the different

tabs (e.g. HRD, Structure,..) to plot/calculate results required for each exercise. Do

not hit the evolve button!

6. For the following exercises (to be done in order) save all your plots by right-clicking

and using “Save As Postscript” (or, if using the PNG plotting option, “Save As”).

This is a laboratory course. You should keep notes and save your work. You should keep

your model sequences. You should keep backups in case of computer failure (trust nobody to

do this for you!). Finally, remember, we’re here to help! Just ask when you need something.
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Exercise 1.

1. Evolve a 1 M⊙ (Z = 0.02) model through the main-sequence phase and toward the

giant branch. You will have to “Terminate” the evolution at some point, but you should

be able to reach luminosities at least 10 L⊙ and perhaps more in the time allowed.

a) What are the effective temperature and luminosity of the starting model?

b) What are the maximum effective temperature and luminosity it eventually reaches?

2. Locate the point in the HRD (go to the HRD tab) corresponding to the same luminosity

as our Sun has now.

a) What is the approximate age? (Be accurate to ±0.1 Gyr)

b) What is the effective temperature?

c) Is this a good model for the Sun?

3. Go to the Structure tab.

a) Which model has the Sun’s luminosity? What is its age?

b) How hot is the centre of the star at age zero?

c) What temperature does the star reach in the final model?

d) What is the central temperature in the model most like our Sun?

e) How long does it take for the star to exhaust its central H supply?

f) How and why does this affect the central temperature?

4. Using the Structure tab, plot the radius of your star as a function of time.

a) When does the star pass through the current solar radius?

b) Based on (a), how would you rate this as an appropriate model of the Sun?

c) Can you think of any effect that could improve this? OPTIONAL: try adjusting the

convection parameter CALP in the mixing tab (under options).

5. Select Central Abundances of C, N, and O and plot them (you might want to use logY

axis) as a function of time.

a) What are the initial abundances of C, N and O? What is their sum i.e. C+N+O?

b) Why does the carbon abundance drop quickly at early times (you might want to

chose log x axis to see this) ?

c) What does the carbon turn into and which burning cycle is involved? What is the

main product of this burning cycle?

d) What happens to the oxygen abundance after 6Gyr? Why does it not happen

earlier? Hint: recall reaction cross-sections and the Gamow peak

e) What does the oxygen turn into and which burning cycle is involved? What is the

main product of this burning cycle?

f) What is the sum C + N + O = at t = 0, 5, 10 Gyr? Why is this sum (almost) a

constant? Why is it not (quite) constant?
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Exercise 2.

1. Evolve a high mass model M = 15 M⊙. Plot the time evolution of the central tem-

perature and central abundances of the different products of nuclear burning (choose

appropriate scales for your plots).

2. Plot log central density vs log central temperature from the RhoT tab.

a) Identify the onset of various burning stages in the course of evolution of such a

star (e.g. by labelling the central helium abundance).

b) What are the central temperatures corresponding to these nuclear burning episodes?

c) Explain the behaviour of neon at the centre of the star.

3. Compare this with the 1 M⊙ model.

a) What are the timescales (in Myr or Gyr) for the different nuclear burning phases

in both stars?

b) Why are the timescales so different between a 1 M⊙ and 15 M⊙ star?
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Exercise 3.

Using the Kippenhahn tab for the 1 M⊙ and 15 M⊙(Z = 0.02) models , answer the following

(comparing the plots for the two masses) :

1. Plot Age on x-axis, Mass on y-axis and H (hydrogen mass fraction) as the z-axis.

Explain what you see.

2. Plot Age, M and E_nuc (the last as log 10). This shows the nuclear burning regions.

a) What happens to the burning region when the core runs out of hydrogen?

b) What happens to the magnitude of the burning? (Hint: try setting the y range to

zoom in on the central region.)

3. Change Age to Model Number. Replot.

a) Why is it easier to see the details of the transition from core to shell burning when

plotting against Model Number?

b) Why is the Model Number not simply linearly proportional to time?

4. Change back to Age for the x-axis and try L on the z-axis (linear).

a) Can you explain what you see?

b) Compare the maximum luminosities with the values in the HRD.
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Exercise 4.

Move back to the 1 M⊙ star and make sure you have evolved this star up the giant branch until

the evolution automatically finishes. Using the Internals tab, answer the following questions

by plotting every few models (e.g. every 100 models). Remember not to crowd the plots with

too many lines.

1. Plot log(density) vs mass for various models.

a) There appears to be a point of inflexion near m = 0.2 M⊙ in some later models.

What is happening there?

b) Plot ∇rad − ∇ad vs mass (with appropriate axis ranges and without crowding the

plot with too many lines) to determine where the convective regions are. How do

these vary with time?

c) The core becomes approximately isothermal after central hydrogen is exhausted.

What physical reasons(s) give rise to an isothermal core? How much luminosity

is generated in this core? By what?

2. Where and when are neutrino losses important? (look at ǫν)

3. Look at the C, N and O abundances. What is happening near the end of the giant

branch evolution? Verify your answers by comparing with previous results.

4. Change the abscissa from M to opacity (you might want to use log axes).

a) What is the relation between ∇rad −∇ad and opacity?

b) Is this due to changes in ∇rad or ∇ad? Why do these changes occur?

c) On the main sequence, at what temperature is the opacity the greatest? Where

is this in the star (find the M & R coordinates) ?
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Exercise 5.

Load a set of zero age main sequence (ZAMS) models to answer the following:

1. Using the HRD tab, create the HRD for the ZAMS models labeled by the mass (chose

appropriate colors, line width, label spacing).

a) What color are the low mass and high mass main sequence stars?

b) What was the surface temperature of the Sun when it was born? .

2. Using the Structure tab, estimate expressions for luminosity and radius as a functions

of mass in the forms L ∝ Mx and R ∝ My. Justify your answers: simply copying from

the lecture notes will not get you any marks.

3. Go to the Kippenhahn tab. Chose Mass(Log10) as x-axis, M/Mass(linear) as y-xis.

a) Plot Convection (Log10) as the z-axis. What is the minimum mass for a star to

have a convective core on the ZAMS? What is the maximum mass for a star to

have a surface convective region?

b) Plot logT instead of convection (Hint: reset the z-range to get better contrast).

Why are the higher mass stars hotter?

c) Plot rho as z-axis (also reset z-range appropriately). Explain what you observe in

this plot.

d) Plot E_nuc (Log10) on the z-axis and comment on what you observe.

e) Split E_nuc into contributions from pp and CNO burning cycles by plotting the

following as Z-axis(Log10):

i. RPP (the pp chain burning rate),

ii. RPC (the 12C(p,γ)13N(β+,ν)13C(p,γ)14N burning rate),

iii. RPNG (the 14N(p,γ)15O(β+,ν)15N(p,γ)16O rate),

iv. RPN (the 14N(p,γ)15O(β+,ν)15N(p,α)12C rate) and

v. RPO (the 16O(p,γ)17F(β+,ν)17O(p,α)14N rate).

Describe their relative contribution to the nuclear burning rate (12.1) as a function

of mass.
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Exercise 6.

Evolve a 20 M⊙ model sequence as far as you can in a separate directory. You want to get

this model sequence as far as you can through the difference nuclear burning phases so i)

go to the Mass Loss and Gain tab and set the factors (CMR, CMRR, CMSC etc. to CMI) to

0.0; ii) go to the Equations and Boundary Conditions tab and set KR1 to 100, KR2 to 50 (this

increases the number of iterations the solver attempts to solve the equations before giving

up), iii) you may need to change the Mesh, if so go to the Mesh tab and increase KH2 (e.g.

to 500 or 1000) and set JCH to 3 (this interpolates the new structure variables). Note that

changing the numerics to higher resolution means your models will take much longer to run!

Have patience, go and get a coffee.

1. Make a Kippenhahn plot with Model number on x-axis, M/Mass on y-axis

a) Plot Convection(Log10) as z-axis and explain the convective regions you observe.

b) Change the z-axis to E_nuc (also Log10 and rescale the range appropriately) to

see the different nuclear burning regions (core/shell). Comment on your findings.

2. Use the Internals tab and show the onion-shell structure of your star, by plotting the

mass fractions of various elements on y-axis (use Log10 with suitable axis range).

a) Select an appropriate model at the end of the hydrogen main sequence to esti-

mate how much mass needs to be stripped off the stellar envelope to get a WNL
(surface XH < 0.4) or WNE (surface XH = 0) star. What are they using the latest

model of your evolved star?

b) Change the Y-axis to E_nuc (also Log10 and rescale the range appropriately) to

see the different nuclear burning regions (core/shell). Comment on your findings.

3. In the HRD tab try labeling the evolution of your star with the Central Abundance of He

and identify the nuclear burning stages in order to explain the values observed along

the evolutionary track.
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Exercise 7. The Virial Theorem

This exercise is a recap of the virial theorem and its importance in stellar evolution. Just to

remind it to you the virial theorem states that,

U+ 2T = 0 ,

where T is the kinetic energy of the system and U is the potential energy. In a star, the kinetic

energy T is related to the internal energy Eint through the adiabatic index γ and gravity is the

source of potential energy U = Egrav, so,

3(γ− 1)Eint + Egrav = 0 ,

where the adiabatic index γ = 5/3 for an ideal gas. We want to investigate stellar models to

test the virial theorem and the validity of the ideal gas approximation during various stages

in the life of a normal star (like our Sun) or more massive stars (e.g. the models used in the

previous exercise).

1. With your solar mass model perform the following tasks:

1. Use the HRD to select an appropriate model for the main sequence.

2. Using the Internals tab, save the model as 1Msun_MS.mdl (just by right clicking

on the model number you have chosen).

3. Download and save the perl script “virial_theorem.pl” (from the course webpage

at http://www.astro.uni-bonn.de/∼izzard/doc/wtts/labcourse/virial-theorem.pl) in the

directory where you performed the previous step . You now have to edit the script

to make it work with your .mdl input file.

a) Using your favourite text editor, e.g. emacs or gedit, change the filename in

the perlscript i.e. find the line $input_file=”1Msun_MS.mdl”;

b) Check and make sure you understand the expressions that calculate the inter-

nal and gravitational energies, Egrav and Eint, i.e. $E_grav -=......; and $E_int
+=.....; (Note that U is given in the model file as the specific internal energy.)

4. Comment on your results obtained for Egrav/Eint (from the model) with regards to

validity of the ideal gas approximation (i.e. what is γ for this star?).

5. How does the α factor to compare with the result you obtained in the exercise

2.3(a) from the stars and stellar evolution lectures? [e.g.α = 1.5 for the main-

sequence (ref. Maeder)]

2. Using the same prescription, select a mid-main-sequence model for a high mass star

(e.g. from the previous exercise with the 20 M⊙ star; justify your choice of model) to

find a value of γ for a massive star. What does this imply about the stability of such

stars and their equation of sta?

3. The total energy of the star is Etot = Eint +Egrav. Derive an expression for Etot as a function

of γ and either Eint or Egrav. From this, deduce what happens if the star has γ < 4/3.
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